Skip to main content

Publications search

Found 34655 matches. Displaying 1-10
Estrogens receptors (ER) are involved in several sociosexual behaviors and fear responses. In particular, the ER alpha is important for sexual behaviors, whereas ER beta modulates anxiolytic responses. Using shRNA directed either against the ER alpha or the ER beta RNAs (or containing luciferase control) encoded within an adeno-associated viral vector, we silenced these receptors in the ventromedial nucleus of the hypothalamus (VMN) and the central amygdala (CeA). We exposed ovariectomized female rats, sequentially treated with estradiol benzoate and progesterone, to five stimuli, previously reported to elicit positive and negative affect. The subjects were housed in groups of 4 females and 3 males in a seminatural environment for several days before hormone treatment. We analyzed the frequency of a large number of behavior patterns. In addition, we performed analyses of co-occurrence in order to detect changes in the structure of behavior after infusion of the vectors. Silencing the ER alpha in the VMN disrupted lordosis and showed some anxiolytic properties in aversive situations, whereas silencing of the ER beta in this structure had no effect. This was also the case after silencing the ER alpha in the CeA. Silencing of the ER beta in this structure increased risk assessment, an expression of anxiety, and increased olfactory exploration of the environment. We hypothesize that the ER beta in the CeA has an important role in the well-established anxiolytic effects of estrogens, and that it may modulate arousal level. Furthermore, it seems that the ER alpha in the VMN is anxiogenic in aversive or threatening situations, in agreement with other studies.
Farfara D, Feierman E, Richards A, Revenko AS, MacLeod RA, Norris EH, Strickland S
Show All Authors

Knockdown of circulating C1 inhibitor induces neurovascular impairment, glial cell activation, neuroinflammation, and behavioral deficits

GLIA 2019 JUL; 67(7):1359-1373
The cross-talk between blood proteins, immune cells, and brain function involves complex mechanisms. Plasma protein C1 inhibitor (C1INH) is an inhibitor of vascular inflammation that is induced by activation of the kallikrein-kinin system (KKS) and the complement system. Knockout of C1INH was previously correlated with peripheral vascular permeability via the bradykinin pathway, yet there was no evidence of its correlation with blood-brain barrier (BBB) integrity and brain function. In order to understand the effect of plasma C1INH on brain pathology via the vascular system, we knocked down circulating C1INH in wild-type (WT) mice using an antisense oligonucleotide (ASO), without affecting C1INH expression in peripheral immune cells or the brain, and examined brain pathology. Long-term elimination of endogenous C1INH in the plasma induced the activation of the KKS and peritoneal macrophages but did not activate the complement system. Bradykinin pathway proteins were elevated in the periphery and the brain, resulting in hypotension. BBB permeability, extravasation of plasma proteins into the brain parenchyma, activation of glial cells, and elevation of pro-inflammatory response mediators were detected. Furthermore, infiltrating innate immune cells were observed entering the brain through the lateral ventricle walls and the neurovascular unit. Mice showed normal locomotion function, yet cognition was impaired and depressive-like behavior was evident. In conclusion, our results highlight the important role of regulated plasma C1INH as it acts as a gatekeeper to the brain via the neurovascular system. Thus, manipulation of C1INH in neurovascular disorders might be therapeutically beneficial.
Castner J, Mammen MJ, Jungquist CR, Licata O, Pender JJ, Wilding GE, Sethi S
Show All Authors

Validation of fitness tracker for sleep measures in women with asthma

JOURNAL OF ASTHMA 2019 JUL 3; 56(7):719-730
Objective: Nighttime wakening with asthma symptoms is a key to assessment and therapy decisions, with no gold standard objective measure. The study aims were to (1) determine the feasibility, (2) explore equivalence, and (3) test concordance of a consumer-based accelerometer with standard actigraphy for measurement of sleep patterns in women with asthma as an adjunct to self-report. Methods: Panel study design of women with poorly controlled asthma from a university-affiliated primary care clinic system was used. We assessed sensitivity and specificity, equivalence and concordance of sleep time, sleep efficiency, and wake counts between the consumer-based accelerometer Fitbit Charge (TM) and Actigraph wGT3X+. We linked data between devices for comparison both automatically by 24-hour period and manually by sleep segment. Results: Analysis included 424 938 minutes, 738 nights, and 833 unique sleep segments from 47 women. The fitness tracker demonstrated 97% sensitivity and 40% specificity to identify sleep. Between device equivalence for total sleep time (15 and 42-minute threshold) was demonstrated by sleep segment. Concordance improved for wake counts and sleep efficiency when adjusting for a linear trend. Conclusions: There were important differences in total sleep time, efficiency, and wake count measures when comparing individual sleep segments versus 24-hour measures of sleep. Fitbit overestimates sleep efficiency and underestimates wake counts in this population compared to actigraphy. Low levels of systematic bias indicate the potential for raw measurements from the devices to achieve equivalence and concordance with additional processing, algorithm modification, and modeling. Fitness trackers offer an accessible and inexpensive method to quantify sleep patterns in the home environment as an adjunct to subjective reports, and require further informatics development.
Doria JW, Forgacs PB
Show All Authors

Incidence, Implications, and Management of Seizures Following Ischemic and Hemorrhagic Stroke

CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS 2019 JUL; 19(7):? Article 37
Purpose of ReviewIn this review, we summarize the recent literature regarding the incidence and treatment of seizures arising after ischemic and hemorrhagic strokes. Additionally, we identify open questions in guidelines and standard clinical care to aid future studies aiming to improve management of seizures in post-stroke patients.Recent FindingsStudies demonstrate an increasing prevalence of seizures following strokes, probably a consequence of advances in post-stroke management and expanding use of continuous EEG monitoring. Post-stroke seizures are associated with longer hospitalization and increased mortality; therefore, prevention and timely treatment of seizures are important. The standard of care is to treat recurrent seizures with anti-epileptic drugs (AEDs) regardless of the etiology. However, there are no established guidelines currently for prophylactic use of AEDs following a stroke.SummaryThe prevalence of post-stroke seizures is increasing. Further studies are needed to determine the risk factors for recurrent seizures and epilepsy after strokes and optimal treatment strategies.
Xu M, Kolding J, Cohen JE
Show All Authors

Sequential analysis and design of fixed-precision sampling of Lake Kariba fishes using Taylor's power law

CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES 2019 JUN; 76(6):904-917
Taylor's power law (TPL), which states that the variance of abundance is a power function of mean abundance, has been used to design sampling of agricultural pests and fish species. We show that TPL holds for means and variances of abundance of accumulated fish samples in the fished and unfished areas separately of Lake Kariba (between Zambia and Zimbabwe), measuring abundance indices by number and weight separately. We use TPL parameters estimated from sequentially accumulated samples to update a stopping line of fixed precision 0.1 after each new sample from a sampling day. In these Lake Kariba data, depending on the sampling area and abundance measure, our updated stopping-line method requires 21% to 41% of the number of sampling days and 19% to 40% of the number of samples that are planned a priori and performed under systematic sampling. Our novel method yields mean abundance estimates similar to those from systematic sampling and provides a conservative approach to reaching a fixed sampling precision level with reduced sampling labor and time. Using mixed-effect modeling for cumulative means and variances with either number or weight from both fished and unfished areas, we find that fishing increases the slope of TPL. This study provides the conceptual framework and an empirical case study for implementing a sequential sampling method for fish assemblages of an inland lake. The possible limitations and applications of our method for sampling in other environments are discussed.
Heselpoth RD, Euler CW, Schuch R, Fischetti VA
Show All Authors

Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 2019 JUN; 63(6):? Article e00342-19
The prevalence of multidrug-resistant Pseudomonas aeruginosa has stimulated development of alternative therapeutics. Bacteriophage peptidoglycan hydrolases, termed lysins, represent an emerging antimicrobial option for targeting Gram-positive bacteria. However, lysins against Gram-negatives are generally deterred by the outer membrane and their inability to work in serum. One solution involves exploiting evolved delivery systems used by colicin-like bacteriocins (e.g., S-type pyocins of P. aeruginosa) to translocate through the outer membrane. Following surface receptor binding, colicin-like bacteriocins form Tol- or TonB-dependent translocons to actively import bactericidal domains through outer membrane protein channels. With this understanding, we developed lysocins, which are bioengineered Iysin-bacteriocin fusion molecules capable of periplasmic import. In our proof-of-concept studies, components from the P. aeruginosa bacteriocin pyocin S2 (PyS2) responsible for surface receptor binding and outer membrane translocation were fused to the GN4 lysin to generate the PyS2-GN4 lysocin. PyS2-GN4 delivered the GN4 lysin to the periplasm to induce peptidoglycan cleavage and log-fold killing of P. aeruginosa with minimal endotoxin release. While displaying narrow-spectrum antipseudomonal activity in human serum, PyS2-GN4 also efficiently disrupted biofilms, outperformed standard-of-care antibiotics, exhibited no cytotoxicity toward eukaryotic cells, and protected mice from P. aeruginosa challenge in a bacteremia model. In addition to targeting P. aeruginosa, lysocins can be constructed to target other prominent Gram-negative bacterial pathogens.
Matthews BJ
Show All Authors

Aedes aegypti

TRENDS IN GENETICS 2019 JUN; 35(6):470-471
Spalinger MR, Atrott K, Baebler K, Schwarzfischer M, Melhem H, Peres DR, Lalazar G, Rogler G, Scharl M, Frey-Wagner I
Show All Authors

Administration of the Hyper-immune Bovine Colostrum Extract IMM-124E Ameliorates Experimental Murine Colitis

JOURNAL OF CROHNS & COLITIS 2019 JUN; 13(6):785-797
Background and Aims Inflammatory bowel disease [IBD] is accompanied by lesions in the epithelial barrier, which allow translocation of bacterial products from the gut lumen to the host's circulation. IMM-124E is a colostrum-based product containing high levels of anti-E.coli-LPS IgG, and might limit exposure to bacterial endotoxins. Here, we investigated whether IMM-124E can ameliorate intestinal inflammation. Methods Acute colitis was induced in WT C57Bl/6J mice by administration of 2.5% dextran sodium sulphate [DSS] for 7 days. T cell transfer colitis was induced via transfer of 0.5 x 10(6) naive T cells into RAG2(-/-) C57Bl/6J mice. IMM-124E was administered daily by oral gavage, either preventively or therapeutically. Results Treatment with IMM-124E significantly ameliorated colitis in acute DSS colitis and in T cell transfer colitis. Maximum anti-inflammatory effects were detected at an IMM-124E concentration of 100 mg/kg body weight, whereas 25 mg/kg and 500 mg/kg were less effective. Histology revealed reduced levels of infiltrating immune cells and less pronounced mucosal damage. Flow cytometry revealed reduced numbers of effector T helper cells in the intestine, whereas levels of regulatory T cells were enhanced. IMM-124E treatment reduced the DSS-induced increase of serum levels of lipopolysaccharide [LPS]-binding protein, indicating reduced systemic LPS exposure. Conclusions Our results demonstrate that oral treatment with IMM-124E significantly reduces intestinal inflammation, via decreasing the accumulation of pathogenic T cells and concomitantly increasing the induction of regulatory T cells. Our study confirms the therapeutic efficacy of IMM-124E in acute colitis and suggests that administration of IMM-124E might represent a novel therapeutic strategy to induce or maintain remission in chronic colitis.
Varble A, Marraffini LA
Show All Authors

Three New Cs for CRISPR: Collateral, Communicate, Cooperate

TRENDS IN GENETICS 2019 JUN; 35(6):446-456
Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated (cas) genes provide protection against invading phages and plasmids in prokaryotes. Typically, short sequences are captured from the genome of the invader, integrated into the CRISPR locus, and transcribed into short RNAs that direct RNA-guided Cas nucleases to the nucleic acids of the invader for their degradation. Recent work in the field has revealed unexpected features of the CRISPR-Cas mechanism: (i) collateral, nonspecific, cleavage of host nucleic acids; (ii) secondary messengers that amplify the immune response; and (iii) immunosuppression of CRISPR targeting by phage-encoded inhibitors. Here, we review these new and exciting findings.
Varble A, Meaden S, Barrangou R, Westra ER, Marraffini LA
Show All Authors

Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci

NATURE MICROBIOLOGY 2019 JUN; 4(6):956-963
CRISPR (clustered regularly interspaced short palindromic repeats) loci and their associated (cas) genes encode an adaptive immune system that protects prokaryotes from viral(1) and plasmid(2) invaders. Following viral (phage) infection, a small fraction of the prokaryotic cells are able to integrate a small sequence of the invader's genome into the CRISPR array(1). These sequences, known as spacers, are transcribed and processed into small CRISPR RNA guides(3-5) that associate with Cas nucleases to specify a viral target for destruction(6-9). Although CRISPR-cas loci are widely distributed throughout microbial genomes and often display hallmarks of horizontal gene transfer(10)(-12), the drivers of CRISPR dissemination remain unclear. Here, we show that spacers can recombine with phage target sequences to mediate a form of specialized transduction of CRISPR elements. Phage targets in phage 85, Phi NM1, Phi NM4 and Phi 12 can recombine with spacers in either chromosomal or plasmid-borne CRISPR loci in Staphylococcus, leading to either the transfer of CRISPR-adjacent genes or the propagation of acquired immunity to other bacteria in the population, respectively. Our data demonstrate that spacer sequences not only specify the targets of Cas nucleases but also can promote horizontal gene transfer.