Skip to main content
!
Emergency notification: University closure in effect. New procedures for accessing campus have been implemented. Read the latest.

Publications search

Found 35038 matches. Displaying 1-10
Maternal consumption of ethanol during pregnancy is known to increase the offspring's risk for developing alcohol use disorders and associated behavioral disturbances. Studies in adolescent and adult animals suggest the involvement of neuroimmune and neurochemical systems in the brain that control these behaviors. To understand the origin of these effects during early developmental stages, we examined in the embryo and neonate the effects of maternal intraoral administration of ethanol (2 g/kg/day) from embryonic day 10 (E10) to E15 on the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 in a specific, dense population of neurons in the lateral hypothalamus (LH), where they are closely related to an orexigenic neuropeptide, melanin-concentrating hormone (MCH), known to promote ethanol consumption and related behaviors. We found that prenatal ethanol exposure increases the expression and density of CCL2 and CCR2 cells along with MCH neurons in the LH and the colocalization of CCL2 with MCH. We also discovered that these effects are sexually dimorphic, consistently stronger in female embryos, and are blocked by maternal administration of a CCL2 antibody (1 and 5 mu g/day, i.p., E10-E15) that neutralizes endogenous CCL2 and of a CCR2 antagonist INCB3344 (1 mg/day, i.p., E10-E15) that blocks CCL2's main receptor. These results, which in the embryo anatomically and functionally link the CCL2/CCR2 system to MCH neurons in the LH, suggest an important role for this neuroimmune system in mediating ethanol's sexually dimorphic, stimulatory effect on MCH neurons that may promote higher level of alcohol consumption described in females. Published by Elsevier Ltd on behalf of IBRO.
Ali AA, Seng EK, Alavi A, Lowes MA
Show All Authors

Exploring changes in placebo treatment arms in hidradenitis suppurativa randomized clinical trials: A systematic review

JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY 2020 JAN; 82(1):45-53
Background: Hidradenitis suppurativa (HS) is characterized by recurrent, painful nodules in flexural areas. Objective: The objective of this study was to explore the placebo response in HS randomized clinical trials and to compare it briefly with the placebo response in psoriasis and atopic dermatitis. Methods: A Cochrane Review on interventions in HS was used as a starting point, and a systematic review was then undertaken by using the PubMed database, yielding 7 HS randomized clinical trials for inclusion in this study. Results: This review demonstrates that there is a robust placebo response in HS that is most marked in physical signs but also marked in pain responses. Limitations: Multiple outcome measures utilized in these studies and reporting bias limited this review. Conclusion: This large placebo response has implications for clinical trial design. This knowledge can also help deliver improved clinical care by forming the basis of nonpharmacologic treatments and help optimize current medication use to maximize the placebo effect.
McEwen BS, Akil H
Show All Authors

Revisiting the Stress Concept: Implications for Affective Disorders

JOURNAL OF NEUROSCIENCE 2020 JAN 2; 40(1):12-21
Over the last 50 years, the concept of stress has evolved significantly, and our understanding of the underlying neurobiology has expanded dramatically. Rather than consider stress biology to be relevant only under unusual and threatening conditions, we conceive of it as an ongoing, adaptive process of assessing the environment, coping with it, and enabling the individual to anticipate and deal with future challenges. Though much remains to be discovered, the fundamental neurocircuitry that underlies these processes has been broadly delineated, key molecular players have been identified, and the impact of this system on neuroplasticity has been well established. More recently, we have come to appreciate the critical interaction between the brain and the rest of the body as it pertains to stress responsiveness. Importantly, this system can become overloaded due to ongoing environmental demands on the individual, be they physical, physiological, or psychosocial. The impact of this overload is deleterious to brain health, and it results in vulnerability to a range of brain disorders, including major depression and cognitive deficits. Thus, stress biology is one of the best understood systems in affective neuroscience and is an ideal target for addressing the pathophysiology of many brain-related diseases. The story we present began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.
Zhang ZJ, Pedicord VA, Peng T, Hang HC
Show All Authors

Site-specific acylation of a bacterial virulence regulator attenuates infection

NATURE CHEMICAL BIOLOGY 2020 JAN; 16(1):95-103
Microbiota generates millimolar concentrations of short-chain fatty acids (SCFAs) that can modulate host metabolism, immunity and susceptibility to infection. Butyrate in particular can function as a carbon source and anti-inflammatory metabolite, but the mechanism by which it inhibits pathogen virulence has been elusive. Using chemical proteomics, we found that several virulence factors encoded by Salmonella pathogenicity island-1 (SPI-1) are acylated by SCFAs. Notably, a transcriptional regulator of SPI-1, HiIA, was acylated on several key lysine residues. Subsequent incorporation of stable butyryl-lysine analogs using CRISPR-Cas9 gene editing and unnatural amino acid mutagenesis revealed that site-specific modification of HilA impacts its genomic occupancy, expression of SPI-1 genes and attenuates Salmonella enterica serovar Typhimurium invasion of epithelial cells, as well as dissemination in vivo. Moreover, a multiple-site HiIA lysine acylation mutant strain of S. Typhimurium was resistant to butyrate inhibition ex vivo and microbiota attenuation in vivo. Our results suggest that prominent microbiota-derived metabolites may directly acylate virulence factors to inhibit microbial pathogenesis in vivo.
Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF
Show All Authors

Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring

PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY 2020 JAN 10; 96(?):? Article UNSP 109728
There are numerous clinical and pre-clinical studies showing that exposure of the embryo to ethanol markedly affects neuronal development and stimulates alcohol drinking and related behaviors. In rodents and zebrafish, our studies show that embryonic exposure to low-dose ethanol, in addition to increasing voluntary ethanol intake during adolescence, increases the density of hypothalamic hypocretin (hcrt) neurons, a neuropeptide known to regulate reward-related behaviors. The question addressed here in zebrafish is whether maternal ethanol intake before conception also affects neuronal and behavioral development, phenomena suggested by clinical reports but seldom investigated. To determine if preconception maternal ethanol consumption also affects these hcrt neurons and behavior in the offspring, we first standardized a method of measuring voluntary ethanol consumption in strain adult and larval zebrafish given gelatin meals containing 10% or 0.1% ethanol, respectively. We found the number of bites of gelatin to be an accurate measure of intake in adults and a strong predictor of blood ethanol levels, and also to be a reliable indicator of intake in larval zebrafish. We then used this feeding paradigm and live imaging to examine the effects of preconception maternal intake of 10% ethanol-gelatin compared to plain-gelatin for 14 days on neuronal development in the offspring. Whereas ethanol consumption by adult female HuC:GFP transgenic zebrafish had no impact on the number of differentiated HuC(+) neurons at 28 h post-fertilization (hpf), preconception ethanol consumption by adult female hcrt:EGFP zebrafish significantly increased the number of hcrt neurons in the offspring, an effect observed at 28 hpf and confirmed at 6 and 12 days post-fertilization (dpf). This increase in hcrt neurons was primarily present on the left side of the brain, indicating asymmetry in ethanol's actions, and it was accompanied by behavioral changes in the offspring, including a significant increase in novelty-induced locomotor activity but not thigmotaxis measured at 6 dpf and also in voluntary consumption of 0.1% ethanol-gelatin at 12 dpf. Notably, these measures of ethanol intake and locomotor activity stimulated by preconception ethanol were strongly, positively correlated with the number of hcrt neurons. These findings demonstrate that preconception maternal ethanol consumption affects the brain and behavior of the offspring, producing effects similar to those caused by embryonic ethanol exposure, and they provide further evidence that the ethanol-induced increase in hcrt neurogenesis contributes to the behavioral disturbances caused by ethanol.
Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O'Donnell ME, van Oijen AM
Show All Authors

Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication

MOLECULAR CELL 2020 JAN 2; 77(1):17-25.e5
Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol alpha-primase DNA polymerase activity in replication and show that Pol alpha-primase and the lagging-strand Pol delta can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.
Serrano-Saiz E, Vogt MC, Levy S, Wang Y, Kaczmarczyk KK, Mei X, Bai G, Singson A, Grant BD, Hobert O
Show All Authors

SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes

GENETICS 2020 JAN; 214(1):163-178
Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, /VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, and . These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to , the and protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, ::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that may not be involved in synaptic transport of glutamate. Nevertheless, mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, is expressed in collagen secreting skin cells where most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, colocalizes most strongly with the recycling promoting factor , a retromer component. Loss of affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.
Callewaert C, Nakatsuji T, Knight R, Kosciolek T, Vrbanac A, Kotol P, Ardeleanu M, Hultsch T, Guttman-Yassky E, Bissonnette R, Silverberg JI, Krueger J, Menter A, Graham NMH, Pirozzi G, Hamilton JD, Gallo RL
Show All Authors

IL-4R alpha Blockade by Dupilumab Decreases Staphylococcus aureus Colonization and Increases Microbial Diversity in Atopic Dermatitis

JOURNAL OF INVESTIGATIVE DERMATOLOGY 2020 JAN; 140(1):191-202.e7
Dupilumab is a fully human antibody to interleukin-4 receptor alpha that improves the signs and symptoms of moderate to severe atopic dermatitis (AD). To determine the effects of dupilumab on Staphylococcus aureus colonization and microbial diversity on the skin, bacterial DNA was analyzed from swabs collected from lesional and nonlesional skin in a double-blind, placebo-controlled study of 54 patients with moderate to severe AD randomized (1:1) and treated with either dupilumab (200 mg weekly) or placebo for 16 weeks. Microbial diversity and relative abundance of Staphylococcus were assessed by DNA sequencing of 16S ribosomal RNA, and absolute S. aureus abundance was measured by quantitative PCR. Before treatment, lesional skin had lower microbial diversity and higher overall abundance of S. aureus than nonlesional skin. During dupilumab treatment, microbial diversity increased and the abundance of S. aureus decreased. Pronounced changes were seen in nonlesional and lesional skin. Decreased S. aureus abundance during dupilumab treatment correlated with clinical improvement of AD and biomarkers of type 2 immunity. We conclude that clinical improvement of AD that is mediated by interleukin-4 receptor alpha inhibition and the subsequent suppression of type 2 inflammation is correlated with increased microbial diversity and reduced abundance of S. aureus.
Chang JWC, Shih CL, Wang CL, Luo JD, Wang CW, Hsieh JJ, Yu CJ, Chiou CC
Show All Authors

Transcriptomic Analysis in Liquid Biopsy Identifies Circulating PCTAIRE-1 mRNA as a Biomarker in NSCLC

CANCER GENOMICS & PROTEOMICS 2020 JAN-FEB; 17(1):91-100
Background/Aim: Circulating mRNA can be a useful source of cancer biomarkers. We took advantage of direct transcriptomic analysis in plasma RNA to identify novel mRNA markers for non-small cell lung cancer (NSCLC). Patients and Methods: Plasma RNA from NSCLC patients and healthy individuals was profiled with cDNA-mediated annealing, selection, extension and ligation (DASL) microarrays. The microarray results were further validated in plasma RNA. Results: Through RNA profiling and online database mining, four gene transcripts were filtered as candidate markers of NSCLC. After validation, the PCTAIRE-1 transcript was identified as a circulating mRNA marker. The diagnostic potential of PCTAIRE-1 was evaluated by receiver operating characteristic curve analysis, which gave a sensitivity and specificity of 60% and 85%, respectively. In addition, high plasma PCTK1 levels were also correlated with poor progression free survival (p=0.008). Conclusion: Circulating mRNA can be profiled with the DASL assay. From the profile, PCTAIRE-1 RNA in the plasma we discovered as a novel diagnostic/prognostic biomarker and an indicator of poor survival in NSCLC patients.
Donovan FX, Solanki A, Mori M, Chavan N, George M, Kumar CS, Okuno Y, Muramastsu H, Yoshida K, Shimamoto A, Takaori-Kondo A, Yabe H, Ogawa S, Kojima S, Yabe M, Ramanagoudr-Bhojappa R, Smogorzewska A, Mohan S, Rajendran A, Auerbach AD, Takata M, Chandrasekharappa SC, Vundinti BR
Show All Authors

A founder variant in the South Asian population leads to a high prevalence of FANCL Fanconi anemia cases in India

HUMAN MUTATION 2020 JAN; 41(1):122-128
Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, predisposition to cancer, and congenital abnormalities. FA is caused by pathogenic variants in any of 22 genes involved in the DNA repair pathway responsible for removing interstrand crosslinks. FANCL, an E3 ubiquitin ligase, is an integral component of the pathway, but patients affected by disease-causing FANCL variants are rare, with only nine cases reported worldwide. We report here a FANCL founder variant, anticipated to be synonymous, c.1092G>A;p.K364=, but demonstrated to induce aberrant splicing, c.1021_1092del;p.W341_K364del, that accounts for the onset of FA in 13 cases from South Asia, 12 from India and one from Pakistan. We comprehensively illustrate the pathogenic nature of the variant, provide evidence for a founder effect, and propose including this variant in genetic screening of suspected FA patients in India and Pakistan, as well as those with ancestry from these regions of South Asia.