Skip to main content
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.

Publications search

Found 36319 matches. Displaying 1-10
Vertebrate genome evolution remains a hotly debated topic, specifically as regards the number and the timing of putative rounds of whole genome duplication events. In this study, I sought to shed light to this conundrum through assessing the evolutionary history of the oxytocin/vasotocin receptor family. I performed ancestral analyses of the genomic segments containing oxytocin and vasotocin receptors (OTR-VTRs) by mapping them back to the reconstructed ancestral vertebrate/chordate karyotypes reported in five independent studies (Nakatani et al., 2007; Putnam et al., 2008; Smith and Keinath, 2015; Smith et al., 2018; Simakov et al., 2020) and found that two alternative scenarios can account for their evolution: one consistent with one round of whole genome duplication in the common ancestor of lampreys and gnathostomes, followed by segmental duplications in both lineages, and another consistent with two rounds of whole genome duplication, with the first occurring in the gnathostome-lamprey ancestor and the second in the jawed vertebrate ancestor. Combining the data reported here with synteny and phylogeny data reported in our previous study (Theofanopoulou et al., 2021), I put forward that a single round of whole genome duplication scenario is more consistent with the synteny and evolution of chromosomes where OTR-VTRs are encountered, without excluding the possibility of a scenario including two rounds of whole genome duplication. Although the analysis of one gene family is not able to capture the full complexity of vertebrate genome evolution, this study can provide solid insight, since the gene family used here has been meticulously analyzed for its genes' orthologous and paralogous relationships across species using high quality genomes.
Ghosh S, Cottingham KL, Reuman DC
Show All Authors

Species relationships in the extremes and their influence on community stability

Synchrony among population fluctuations of multiple coexisting species has a major impact on community stability, i.e. on the relative temporal constancy of aggregate properties such as total community biomass. However, synchrony and its impacts are usually measured using covariance methods, which do not account for whether species abundances may be more correlated when species are relatively common than when they are scarce, or vice versa. Recent work showed that species commonly exhibit such 'asymmetric tail associations'. We here consider the influence of asymmetric tail associations on community stability. We develop a 'skewness ratio' which quantifies how much species relationships and tail associations modify stability. The skewness ratio complements the classic variance ratio and related metrics. Using multi-decadal grassland datasets, we show that accounting for tail associations gives new viewpoints on synchrony and stability; e.g. species associations can alter community stability differentially for community crashes or explosions to high values, a fact not previously detectable. Species associations can mitigate explosions of community abundance to high values, increasing one aspect of stability, while simultaneously exacerbating crashes to low values, decreasing another aspect of stability; or vice versa. Our work initiates a new, more flexible paradigm for exploring species relationships and community stability. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Nelson G, Boehm U, Bagley S, Bajcsy P, Bischof J, Brown CM, Dauphin A, Dobbie IM, Eriksson JE, Faklaris O, Fernandez-Rodriguez J, Ferrand A, Gelman L, Gheisari A, Hartmann H, Kukat C, Laude A, Mitkovski M, Munck S, North AJ, Rasse TM, Resch-Genger U, Schuetz LC, Seitz A, Strambio-De-Castillia C, Swedlow JR, Alexopoulos I, Aumayr K, Avilov S, Bakker GJ, Bammann RR, Bassi A, Beckert H, Beer S, Belyaev Y, Bierwagen J, Birngruber KA, Bosch M, Breitlow J, Cameron LA, Chalfoun J, Chambers JJ, Chen CEL, Conde-Sousa E, Corbett AD, Cordelieres FP, Del Nery E, Dietzel R, Eismann F, Fazeli E, Felscher A, Fried H, Gaudreault N, Goh WI, Guilbert T, Hadleigh R, Hemmerich P, Holst GA, Itano MS, Jaffe CB, Jambor HK, Jarvis SC, Keppler A, Kirchenbuechler D, Kirchner M, Kobayashi N, Krens G, Kunis S, Lacoste J, Marcello M, Martins GG, Metcalf DJ, Mitchell CA, Moore J, Mueller T, Nelson MS, Ogg S, Onami S, Palmer AL, Paul-Gilloteaux P, Pimentel JA, Plantard L, Podder S, Rexhepaj E, Royon A, Saari MA, Schapman D, Schoonderwoert V, Schroth-Diez B, Schwartz S, Shaw M, Spitaler M, Stoeckl MT, Sudar D, Teillon J, Terjung S, Thuenauer R, Wilms CD, Wright GD, Nitschke R
Show All Authors

QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

JOURNAL OF MICROSCOPY 2021 OCT; 284(1):56-73
A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
Windisch KA, Mazid S, Johnson MA, Ashirova E, Zhou Y, Gergoire L, Warwick S, McEwen BS, Kreek MJ, Milner TA
Show All Authors

Acute Delta 9-tetrahydrocannabinol administration differentially alters the hippocampal opioid system in adult female and male rats

SYNAPSE 2021 OCT; 75(10):? Article e22218
Our prior studies demonstrated that the rat hippocampal opioid system can undergo sex-specific adaptations to external stimuli that can influence opioid-associated learning processes. This opioid system extensively overlaps with the cannabinoid system. Moreover, acute administration of Delta(9)Tetrahydrocannabinoid (THC), the primary psychoactive constituent of cannabis, can alter cognitive behaviors that involve the hippocampus. Here, we use light and electron microscopic immunocytochemical methods to examine the effects of acute THC (5 mg/kg, i.p., 1 h) on mossy fiber Leu-Enkephalin (LEnk) levels and the distribution and phosphorylation levels of delta and mu opioid receptors (DORs and MORs, respectively) in CA3 pyramidal cells and parvalbumin dentate hilar interneurons of adult female and male Sprague-Dawley rats. In females with elevated estrogen states (proestrus/estrus stage), acute THC altered the opioid system so that it resembled that seen in vehicle-injected females with low estrogen states (diestrus) and males: (1) mossy fiber LEnk levels in CA2/3a decreased; (2) phosphorylated-DOR levels in CA2/3a pyramidal cells increased; and (3) phosphorylated-MOR levels increased in most CA3b laminae. In males, acute THC resulted in the internalization of MORs in parvalbumin-containing interneuron dendrites which would decrease disinhibition of granule cells. In both sexes, acute THC redistributed DORs to the near plasma membrane of CA3 pyramidal cell dendrites, however, the dendritic region varied with sex. Additionally, acute THC also resulted in a sex-specific redistribution of DORs within CA3 pyramidal cell dendrites which could differentially promote synaptic plasticity and/or opioid-associated learning processes in both females and males.
Kow LM, Kandel H, Kilinc M, Daniels MA, Magarinos AM, Jiang CS, Pfaff DW
Show All Authors

Potassium channels and the development of arousal-relevant action potential trains in primary hindbrain neurons

BRAIN RESEARCH 2021 OCT 1; 1768(?):? Article 147574
Neurons in nucleus gigantocellularis (NGC) have been shown by many lines of evidence to be important for regulating generalized CNS arousal. Our previous study on mouse pups suggested that the development of NGC neurons' capability to fire action potential (AP) trains may both lead to the development of behavioral arousal and may itself depend on an increase in delayed rectifier currents. Here with whole-cell patch clamp we studied delayed rectifier currents in two stages. First, primary cultured neurons isolated from E12.5 embryonic hindbrain (HB), a dissection which contains all of NGC, were used to take advantage of studying neurons in vitro over using neurons in situ or in brain slices. HB neurons were tested with Guangxitoxin-1E and Resveratrol, two inhibitors of Kv2 channels which mediate the main bulk of delayed rectifier currents. Both inhibitors depressed delayed rectifier currents, but differentially: Resveratrol, but not Guangxitoxin-1E, reduced or abolished action potentials in AP trains. Since Resveratrol affects the Kv2.2 subtype, the development of the delayed rectifier mediated through Kv2.2 channels may lead to the development of HB neurons' capability to generate AP trains. Stage Two in this work found that electrophysiological properties of the primary HB neurons recorded are essentially the same as those of NGC neurons. Thus, from the two stages combined, we propose that currents mediated through Kv2.2 are crucial for generating AP trains which, in turn, lead to the development of mouse pup behavioral arousal.
Yang ZL, Wu XLS, Wei YL, Polyanskaya SA, Iyer SV, Jung M, Lach FP, Adelman ER, Klingbeil O, Milazzo JP, Kramer M, Demerdash OE, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Smogorzewska A, Vakoc CR
Show All Authors

Transcriptional Silencing of ALDH2 Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia

CANCER DISCOVERY 2021 SEP; 11(9):2300-2315
Hundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitination machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T and FANCL as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and aldehyde dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxicity of endogenous aldehydes. We show DNA hypermethylation and silencing of ALDH2 occur in a recurrent manner in human AML, which is sufficient to confer FA pathway dependency. Our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML. SIGNIFICANCE: Aberrant gene silencing is an epigenetic hallmark of human cancer, but the functional consequences of this process are largely unknown. In this study, we show how an epigenetic alteration leads to an actionable dependency on a DNA repair pathway through the disabling of genetic redundancy.
Racine-Brzostek SE, Karbaschi M, Gaebler C, Klasse PJ, Yee J, Caskey M, Yang HS, Hao Y, Sukhu A, Rand S, Chadburn A, Shi YY, Zuk R, Nussenzweig MC, Cushing MM, Zhao Z
Show All Authors

TOP-Plus Is a Versatile Biosensor Platform for Monitoring SARS-CoV-2 Antibody Durability

CLINICAL CHEMISTRY 2021 SEP; 67(9):1249-1258
BACKGROUND: Low initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers dropping to undetectable levels within months after infection have raised concerns about long-term immunity. Both the antibody levels and the avidity of the antibody-antigen interaction should be examined to understand the quality of the antibody response. METHODS: A testing-on-a-probe "plus" panel (TOPPlus) was developed to include a newly developed avidity assay built into the previously described SARS-CoV2 TOP assays that measured total antibody (TAb), surrogate neutralizing antibody (SNAb), IgM, and IgG on a versatile biosensor platform. TAb and SNAb levels were compared with avidity in previously infected individuals at 1.3 and 6.2 months after infection in paired samples from 80 patients with coronavirus disease 2019 (COVID-19). Sera from individuals vaccinated for SARS-CoV-2 were also evaluated for antibody avidity. RESULTS: The newly designed avidity assay in this TOP panel correlated well with a reference Bio-Layer Interferometry avidity assay (r = 0.88). The imprecision of the TOP avidity assay was <10%. Although TAb and neutralization activity (by SNAb) decreased between 1.3 and 6.2 months after infection, the antibody avidity increased significantly (P< 0.0001). Antibody avidity in 10 SARS-CoV-2 vaccinated individuals (median: 28 days after vaccination) was comparable to the measured antibody avidity in infected individuals (median: 26 days after infection). CONCLUSIONS: This highly precise and versatile TOPPlus panel with the ability to measure SARS-CoV-2 TAb, SNAb, IgG, and IgM antibody levels and avidity of individual sera on one sensor can become a valuable asset in monitoring not only patients infected with SARS-CoV-2 but also the status of individuals' COVID-19 vaccination response.
del Marmol J, Yedlin MA, Ruta V
Show All Authors

The structural basis of odorant recognition in insect olfactory receptors

NATURE 2021 SEP 2; 597(7874):126-131
Olfactory systems must detect and discriminate amongst an enormous variety of odorants(1). To contend with this challenge, diverse species have converged on a common strategy in which odorant identity is encoded through the combinatorial activation of large families of olfactory receptors(1-3), thus allowing a finite number of receptors to detect a vast chemical world. Here we offer structural and mechanistic insight into how an individual olfactory receptor can flexibly recognize diverse odorants. We show that the olfactory receptor MhOR5 from the jumping bristletail(4) Machilis hrabei assembles as a homotetrameric odorant-gated ion channel with broad chemical tuning. Using cryo-electron microscopy, we elucidated the structure of MhOR5 in multiple gating states, alone and in complex with two of its agonists-the odorant eugenol and the insect repellent DEET. Both ligands are recognized through distributed hydrophobic interactions within the same geometrically simple binding pocket located in the transmembrane region of each subunit, suggesting a structural logic for the promiscuous chemical sensitivity of this receptor. Mutation of individual residues lining the binding pocket predictably altered the sensitivity of MhOR5 to eugenol and DEET and broadly reconfigured the receptor's tuning. Together, our data support a model in which diverse odorants share the same structural determinants for binding, shedding light on the molecular recognition mechanisms that ultimately endow the olfactory system with its immense discriminatory capacity.
Chan TC, Lee MS, Huang WC, Chang WY, Krueger JG, Tsai TF
Show All Authors

Capsaicin attenuates imiquimod-induced epidermal hyperplasia and cutaneous inflammation in a murine model of psoriasis

BIOMEDICINE & PHARMACOTHERAPY 2021 SEP; 141(?):? Article 111950
Psoriasis is one of the most common chronic inflammatory diseases that is characterized by well-defined erythematous plaques, with typical histopathological findings of lymphocytic infiltration and epidermal hyperplasia. Topical treatments of psoriasis are either associated with limited response or with side effects. Up to date, topicals targeting neuroimmune axis in psoriasis or psoriasiform dermatitis have not been explored. Here, we investigated whether percutaneous delivery of capsaicin could attenuate the pathological change of psoriasiform inflammation. Imiquimod-induced psoriasis-like murine model was used to evaluate therapeutic effects from topical application of capsaicin. An additional model of psoriasiform dermatitis induced by direct IL-23 injection was used to identify the level of action from capsaicin in this neuroimmune axis. Cutaneous inflammation was assessed by erythema level and ear thickness change. Key cytokines, infiltrating cells in the skin, and draining lymph node cells were investigated. The results showed that capsaicin administration obstructed the activation of IL-23/IL-17 pathway induced by imiquimod, presenting with significantly reduced psoriasiform dermatitis both in gross appearance and microscopic features. Tissue gene expression of psoriatic core cytokines induced by imiquimod (including IL-23, IL-17A, IL-22, TNF-alpha, and IL-6) were greatly decreased by capsaicin application. This protective effect from capsaicin could be hampered by direct intradermal injection of IL-23. Conclusion: Epicutaneous delivery of capsaicin on imiquimod-treated murine skin could significantly decrease expression of multiple inflammatory cytokines and the severity of prototypic change of psoriasiform inflammation. The beneficial effect imposed by capsaicin reinforces the neuroimmune contribution towards psoriasiform inflammation and provides a potential non-steroidal therapeutic alternative for topical treatment of psoriasiform dermatitis.
Wysocka M, Monteiro T, de Pina C, Goncalves D, de Pina S, Ludgero-Correia A, Moreno J, Zamudio R, Almebairik N, Gray LJ, Pareek M, Jenkins DR, Aires-de-Sousa M, De Lencastre H, Beleza S, Araujo II, Conceicao T, Oggioni MR
Show All Authors

Whole-genome analysis uncovers loss of blaZ associated with carriage isolates belonging to methicillin-resistant Staphylococcus aureus (MRSA) clone ST5-VI in Cape Verde

Objectives: Surveillance studies for Staphylococcus aureus carriage are a primary tool to survey the preva-lence of methicillin-resistant S. aureus (MRSA) in the general population, patients and healthcare workers. We have previously reported S. aureus carriage in various African countries, including Cape Verde. Methods: Whole-genome sequences of 106 S. aureus isolates from Cape Verde were determined. Results: Staphylococcus aureus carriage isolates in Cape Verde show high genetic variability, with the de-tection of 27 sequence types (STs) and three primary genetic clusters associated with ST152, ST15 and ST5. One transmission event with less than eight core-genome single nucleotide polymorphisms (cgSNP) differences was detected among the ST5-VI MRSA lineage. Genetic analysis confirmed the phenotypic resistance and allowed the identification of six independent events of plasmid or transposon loss asso-ciated with the deletion of blaZ in nine isolates. In the four ST5 MRSA isolates, loss of the blaZ plasmid coincided with the acquisition of SCCmec type VI and an unusual penicillin phenotype with a minimum inhibitory concentration (MIC) at the breakpoint, indicating an adaptation trend in this endemic lineage. Similar events of blaZ plasmid loss, with concomitant acquisition SCCmec elements, were detected among ST5 isolates from different geographical origins. Conclusion: Overall, the genome data allowed to place isolates in a phylogenetic context and to iden-tify different blaZ gene deletions associated with plasmid or transposon loss. Genomic analysis unveiled adaptation and evolution trends, namely among emerging MRSA lineages in the country, which deserve additional consideration in the design of future infection control protocols. (c) 2021 The Authors. Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy. This is an open access article under the CC BY license ( )