Skip to main content
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.

Publications search

Found 36604 matches. Displaying 1-10
Caradonna SG, Zhang TY, O'Toole N, Shen MJ, Khalil H, Einhorn NR, Wen XL, Parent C, Lee FS, Akil H, Meaney MJ, McEwen BS, Marrocco J
Show All Authors

Genomic modules and intramodular network concordance in susceptible and resilient male mice across models of stress

The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.
Maguin P, Varble A, Modell JW, Marraffini LA
Show All Authors

Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response

MOLECULAR CELL 2022 MAR 3; 82(5):907-+
Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.
Stoeckle MY, Adolf J, Ausubel JH, Charlop-Powers Z, Dunton KJ, Hinks G
Show All Authors

Current laboratory protocols for detecting fish species with environmental DNA optimize sensitivity and reproducibility, especially for more abundant populations

Analysing environmental DNA (eDNA) in seawater can aid in monitoring marine fish populations. However, the extent to which current methods optimize fish eDNA detection from water samples is unknown. Here, we test modifications to laboratory components of an eDNA metabarcoding protocol targeting marine finfish. As compared to baseline methods, amplifying a smaller proportion of extracted DNA yielded fewer species, and, conversely, amplifying a larger proportion identified more taxa. Higher-read species were amplified more reproducibly and with less variation in read number than were lower-read species. Among pooled samples, 20-fold deeper sequencing recovered one additional fish species out of a total of 63 species. No benefit was observed with additional PCR cycles, alternative primer concentrations, or fish-selective primers. Experiments using an exogenous DNA standard to assess absolute eDNA concentration suggested that, for a given proportion of a DNA sample, current laboratory methods for metabarcoding marine fish eDNA are near to maximally sensitive. Our results support the unofficial standard collection volume of one liter for eDNA assessment of commonly encountered marine fish species. We conclude that eDNA rarity poses the main challenge to current methods.
Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA
Show All Authors

Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex

In their complex, the SARS-CoV-2 nsp13 helicase and RNA polymerase would translocate on RNA in opposite directions. Cryo-EM and MD simulations resolve this conundrum, suggesting an allosteric mechanism to turn the helicase on and off. The SARS-CoV-2 nonstructural proteins coordinate genome replication and gene expression. Structural analyses revealed the basis for coupling of the essential nsp13 helicase with the RNA-dependent RNA polymerase (RdRp) where the holo-RdRp and RNA substrate (the replication-transcription complex or RTC) associated with two copies of nsp13 (nsp13(2)-RTC). One copy of nsp13 interacts with the template-RNA in an opposing polarity to the RdRp and is envisaged to drive the RdRp backward on the RNA template (backtracking), prompting questions as to how the RdRp can efficiently synthesize RNA in the presence of nsp13. Here we use cryogenic-electron microscopy and molecular dynamics simulations to analyze the nsp13(2)-RTC, revealing four distinct conformational states of the helicases. The results indicate a mechanism for the nsp13(2)-RTC to turn backtracking on and off, using an allosteric mechanism to switch between RNA synthesis or backtracking in response to stimuli at the RdRp active site.
Biegler MT, Fedrigo O, Collier P, Mountcastle J, Haase B, Tilgner HU, Jarvis ED
Show All Authors

Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9

SCIENTIFIC REPORTS 2022 MAR 14; 12(1):? Article 4369
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species.
Gruell H, Gunst JD, Cohen YZ, Pahus MH, Malin JJ, Platten M, Millard KG, Tolstrup M, Jones RB, Alberto WDC, Lorenzi JCC, Oliveira TY, Kummerle T, Suarez I, Unson-O'Brien C, Nogueira L, Olesen R, Ostergaard L, Nielsen H, Lehmann C, Nussenzweig MC, Fatkenheuer G, Klein F, Caskey M, Sogaard OS
Show All Authors

Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial

LANCET MICROBE 2022 MAR; 3(3):E203-E214
Background The administration of broadly neutralising anti-HIV-1 antibodies before latency reversal could facilitate elimination of HIV-1-infected CD4 T cells. We tested this concept by combining the broadly neutralising antibody 3BNC117 in combination with the latency-reversing agent romidepsin in people with HIV-1 who were taking suppressive antiretroviral therapy (ART). Methods We did a randomised, open-label, phase 2A trial at three university hospital centres in Denmark, Germany, and the USA. Eligible participants were virologically suppressed adults aged 18-65 years who were infected with HIV-1 and on ART for at least 18 months, with plasma HIV-1 RNA concentrations of less than 50 copies per mL for at least 12 months, and a CD4 T-cell count of greater than 500 cells per mu L. Participants were randomly assigned (1:1) to receive 3BNC117 plus romidepsin or romidepsin alone in two cycles. All participants received intravenous infusions of romidepsin (5 mg/m(2) given over 120 min) at weeks 0, 1, and 2 (treatment cycle 1) and weeks 8, 9, and 10 (treatment cycle 2). Those in the 3BNC117 plus romidepsin group received an intravenous infusion of 3BNC117 (30 mg/kg given over 60 min) 2 days before each treatment cycle. An analytic treatment interruption (ATI) of ART was done at week 24 in both groups. Our primary endpoint was time to viral rebound during analytic treatment interruption, which was assessed in all participants who completed both treatment cycles and ATI. We used a log-rank test to compare time to viral rebound during analytic treatment interruption between the two groups. This trial is registered with ClinicalTrials. gov, NCT02850016. It is closed to new participants, and all follow-up is complete. Findings Between March 20, 2017, and Aug 14, 2018, 22 people were enrolled and randomly assigned, 11 to the 3BNC117 plus romidepsin group and 11 to the romidepsin group. 19 participants completed both treatment cycles and the ATI: 11 in the 3BNC117 plus romidepsin group and 8 in the romidepsin group. The median time to viral rebound during ATI was 18 days (IQR 14-28) in the 3BNC117 plus romidepsin group and 28 days (21-35) in the romidepsin group B (p=0.0016). Although this difference was significant, prolongation of time to viral rebound was not clinically meaningful in either group. All participants in both groups reported adverse events, but overall the combination of 3BNC117 and romidepsin was safe. Two severe adverse events were observed in the romidepsin group during 48 weeks of follow-up, one of which-increased direct bilirubin-was judged to be related to treatment. Interpretation The combination of 3BNC117 and romidepsin was safe but did not delay viral rebound during analytic treatment interruptions in individuals on long-term ART. The results of our trial could serve as a benchmark for further optimisation of HIV-1 curative strategies among people with HIV-1 who are taking suppressive ART. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.
Ryan PA, McGrath D, Euler CW
Show All Authors

Watch your Strep: Streptococcus pyogenes is a preventable cause of maternal death

FUTURE MICROBIOLOGY 2022 MAR; 17(5):319-323
Formenti G, Theissinger K, Fernandes C, Bista I, Bombarely A, Bleidorn C, Ciofi C, Crottini A, Godoy JA, Hoglund J, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsboll PJ, Pampoulie C, Ruiz-Lopez MJ, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang GJ, Mazzoni CJ, Jarvis ED, Balint M
Show All Authors

The era of reference genomes in conservation genomics

Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics.
Passarelli MC, Pinzaru AM, Asgharian H, Liberti MV, Heissel S, Molina H, Goodarzi H, Tavazoie SF
Show All Authors

Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics

NATURE CELL BIOLOGY 2022 MAR; 24(3):307-+
Tumourigenesis and cancer progression require enhanced global protein translation(1-3). Such enhanced translation is caused by oncogenic and tumour-suppressive events that drive the synthesis and activity of translational machinery(4,5). Here we report the surprising observation that leucyl-tRNA synthetase (LARS) becomes repressed during mammary cell transformation and in human breast cancer. Monoallelic genetic deletion of LARS in mouse mammary glands enhanced breast cancer tumour formation and proliferation. LARS repression reduced the abundance of select leucine tRNA isoacceptors, leading to impaired leucine codon-dependent translation of growth suppressive genes, including epithelial membrane protein 3 (EMP3) and gamma-glutamyltransferase 5 (GGT5). Our findings uncover a tumour-suppressive tRNA synthetase and reveal that dynamic repression of a specific tRNA synthetase-along with its downstream cognate tRNAs-elicits a downstream codon-biased translational gene network response that enhances breast tumour formation and growth.