Skip to main content

Publications search

Found 37151 matches. Displaying 71-80
Azzopardi SA, Lu HY, Monette S, Rabinowitsch AI, Salmon JE, Matsunami H, Blob...
Show All Authors

Role of iRhom2 in Olfaction: Implications for Odorant Receptor Regulation and...

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2024 JUN; 25(11):? Article 6079
The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNF alpha (Tumor necrosis factor alpha) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.
Rincón TC, Kapoor T, Keeffe JR, Simonelli L, Hoffmann HH, Agudelo M, Jurado A...
Show All Authors

Human antibodies in Mexico and Brazil neutralizing tick-borne flaviviruses

CELL REPORTS 2024 JUN 25; 43(6):? Article 114298
Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito -borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.
Zeledon EV, Baxt LA, Khan TA, Michino M, Miller M, Huggins DJ, Jiang CS, Voss...
Show All Authors

Next-generation neuropeptide Y receptor small-molecule agonists inhibit mosqu...

PARASITES & VECTORS 2024 JUN 28; 17(1):? Article 276
Background Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small-molecule NPYLR7 agonists that inhibit host-seeking and blood-feeding when fed to mosquitoes at high micromolar doses. Methods Using structure-activity relationship analysis and structure-guided design we synthesized 128 compounds with similarity to known NPYLR7 agonists. Results Although in vitro potency (EC50) was not strictly predictive of in vivo effect, we identified three compounds that reduced blood-feeding from a live host when fed to mosquitoes at a dose of 1 mu M-a 100-fold improvement over the original reference compound. Conclusions Exogenous activation of NPYLR7 represents an innovative vector control strategy to block mosquito biting behavior and prevent mosquito-human host interactions that lead to pathogen transmission.
Eddens T, Parks OB, Zhang Y, Manni ML, Casanova JL, Ogishi M, Williams JV
Show All Authors

PD-1 signaling in neonates restrains CD8+T cell function and protects against...

MUCOSAL IMMUNOLOGY 2024 JUN; 17(3):476-490
Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-in fl ammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1 -/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-speci fi c CD8 + T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8 + T cells had reduced interferon-gamma (IFN- gamma), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1 -/- neonatal CD8 + T cells had markedly increased production of IFN- gamma and granzyme B compared with B6 neonates. Pdcd1 -/- neonates had increased acute pathology with HMPV or in fl uenza. Pdcd1 -/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8 + T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8 + T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8 + T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.
Moadab F, Sohrabi S, Wang XX, Najjar R, Wolters JC, Jiang H, Miao WY, Romero ...
Show All Authors

Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcripti...

MOBILE DNA 2024 JUN 27; 15(1):? Article 14
BackgroundSystemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p.ResultsHere we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis.ConclusionsThese results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.
Short B
Show All Authors

The S1 helix is a VIP in VSP

JOURNAL OF GENERAL PHYSIOLOGY 2024 JUN 11; 156(7):? Article e202413612
JGP study shows that hydrophobic residues in the S1 transmembrane domain modulate the voltage-sensor movements and enzymatic activity of voltage-sensing phosphatase.
Leung NY, Xu CW, Li JSS, Ganguly A, Meyerhof GT, Regimbald-Dumas Y, Lane EA, ...
Show All Authors

Gut tumors in flies alter the taste valence of an anti-tumorigenic bitter com...

CURRENT BIOLOGY 2024 JUN 17; 34(12):?
The sense of taste is essential for survival, as it allows animals to distinguish between foods that are nutritious from those that are toxic. However, innate responses to different tastants can be modulated or even reversed under pathological conditions. Here, we examined whether and how the internal status of an animal impacts taste valence by using Drosophila models of hyperproliferation in the gut. In all three models where we expressed proliferation -inducing transgenes in intestinal stem cells (ISCs), hyperproliferation of ISCs caused a tumor -like phenotype in the gut. While tumor -bearing flies had no deficiency in overall food intake, strikingly, they exhibited an increased gustatory preference for aristolochic acid (ARI), which is a bitter and normally aversive plant -derived chemical. ARI had anti -tumor effects in all three of our gut hyperproliferation models. For other aversive chemicals we tested that are bitter but do not have anti -tumor effects, gut tumors did not affect avoidance behaviors. We demonstrated that bitter -sensing gustatory receptor neurons (GRNs) in tumor -bearing flies respond normally to ARI. Therefore, the internal pathology of gut hyperproliferation affects neural circuits that determine taste valence postsynaptic to GRNs rather than altering taste identity by GRNs. Overall, our data suggest that increased consumption of ARI may represent an attempt at self -medication. Finally, although ARI's potential use as a chemotherapeutic agent is limited by its known toxicity in the liver and kidney, our findings suggest that tumor -bearing flies might be a useful animal model to screen for novel anti -tumor drugs.
Ramos EA, Kiszka JJ, Reiss D, Magnasco MO
Show All Authors

Coastal dolphins provide foraging opportunities to benthic-feeding seabirds i...

BEHAVIOUR 2024 JUN; 161(6):495-503
In marine ecosystems, predators can affect community and ecosystem dynamics through a variety of processes such as foraging facilitation. Here, we report evidence of foraging facilitation between common bottlenose dolphins (Tursiops truncatus) and double-crested cormorants (Nannopterum auritum) in the Caribbean seagrass-dominated atoll of Turneffe, Belize using aerial drone observations conducted in 2015-2017. While dolphins exhibited occasional aggressive behaviours toward the cormorants, the latter frequently followed dolphin movements, suggesting opportunistic pursuit of dolphins for prey access during dolphin bottom foraging activity. Our observations underscore the intricate ecological relationships among marine predators and highlight the need to quantify the mutual benefits and costs of such interactions as coastal ecosystems are rapidly changing.
Lee U, Mozeika SM, Zhao L
Show All Authors

A Synergistic, Cultivator Model of De Novo Gene Origination

GENOME BIOLOGY AND EVOLUTION 2024 JUN 5; 16(6):? Article evae103
The origin and fixation of evolutionarily young genes is a fundamental question in evolutionary biology. However, understanding the origins of newly evolved genes arising de novo from noncoding genomic sequences is challenging. This is partly due to the low likelihood that several neutral or nearly neutral mutations fix prior to the appearance of an important novel molecular function. This issue is particularly exacerbated in large effective population sizes where the effect of drift is small. To address this problem, we propose a regulation-focused, cultivator model for de novo gene evolution. This cultivator-focused model posits that each step in a novel variant's evolutionary trajectory is driven by well-defined, selectively advantageous functions for the cultivator genes, rather than solely by the de novo genes, emphasizing the critical role of genome organization in the evolution of new genes.
Li TM, Zyulina V, Seltzer ES, Dacic M, Chinenov Y, Daamen AR, Veiga KR, Schwa...
Show All Authors

The interferon-rich skin environment regulates Langerhans cell ADAM17 to prom...

ELIFE 2024 JUN 11; 13(?):? Article e85914
The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.