Skip to main content
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.

Publications search

Found 36604 matches. Displaying 71-80
Farris S, Hacisuleyman E, Donlin-Asp P, Cioni JM
Show All Authors

Editorial: RNA Localization and Localized Translation in Neurons

Fins JJ
Show All Authors

Consciousness, Conflations, and Disability Rights: Denials of Care for Children in the "Minimally Conscious State"

JOURNAL OF LAW MEDICINE & ETHICS 2022; 50(1):181-183 Article PII S1073110522000225
This essay critiques the fiercely utilitarian allocation scheme of Cameron et al. Children have no hope of recovery if their lives are cut short based on administrative protocols that misrepresent the nature of their conditions. Unilateral futility judgements - especially those based on a false predicate - are discriminatory. When considering the best interests of children, we should see possibility in disability and not advance ill-informed utilitarianism.
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M
Show All Authors

High-power screening (HPS) empowered by DNA-encoded libraries

The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Sun QS, Burgren NM, Cheraghlou S, Paller AS, Larralde M, Bercovitch L, Levinsohn J, Ren I, Hu RH, Zhou J, Zaki T, Fan R, Tian C, Saraceni C, Nelson-Williams CJ, Loring E, Craiglow BG, Milstone LM, Lifton RP, Boyden LM, Choate KA
Show All Authors

The Genomic and Phenotypic Landscape of Ichthyosis An Analysis of 1000 Kindreds

JAMA DERMATOLOGY 2022 JAN; 158(1):16-25
IMPORTANCE Ichthyoses are clinically and genetically heterogeneous disorders characterized by scaly skin. Despite decades of investigation identifying pathogenic variants in more than 50 genes, clear genotype-phenotype associations have been difficult to establish. OBJECTIVE To expand the genotypic and phenotypic spectra of ichthyosis and delineate genotype-phenotype associations. DESIGN, SETTING, AND PARTICIPANTS This cohort study recruited an international group of individuals with ichthyosis and describes characteristic and distinguishing features of common genotypes, including genotype-phenotype associations, during a 10-year period from June 2011 to July 2021. Participants of all ages, races, and ethnicities were included and were enrolled worldwide from referral centers and patient advocacy groups. A questionnaire to assess clinical manifestations was completed by those with a genetic diagnosis. MAIN OUTCOMES AND MEASURES Genetic analysis of saliva or blood DNA, a phenotyping questionnaire, and standardized clinical photographs. Descriptive statistics, such as frequency counts, were used to describe the cases in the cohort. Fisher exact tests identified significant genotype-phenotype associations. RESULTS Results were reported for 1000 unrelated individuals enrolled from around the world (mean [SD] age, 50.0 [34.0] years; 524 [52.4%] were female, 427 [42.7%] were male, and 49 [4.9%] were not classified); 75% were from the US, 12% from Latin America, 4% from Canada, 3% from Europe, 3% from Asia, 2% from Africa, 1% from the Middle East, and 1% from Australia and New Zealand. A total of 266 novel disease-associated variants in 32 genes were identified among 869 kindreds. Of these, 241 (91%) pathogenic variants were found through multiplex amplicon sequencing and 25 (9%) through exome sequencing. Among the 869 participants with a genetic diagnosis, 304 participants (35%) completed the phenotyping questionnaire. Analysis of clinical manifestations in these 304 individuals revealed that pruritus, hypohydrosis, skin pain, eye problems, skin odor, and skin infections were the most prevalent self-reported features. Genotype-phenotype association analysis revealed that the presence of a collodion membrane at birth (odds ratio [OR], 6.7; 95% CI, 3.0-16.7; P<.001), skin odor (OR, 2.8; 95% CI, 1.1-6.8; P=.02), hearing problems (OR, 2.9; 95% CI, 1.6-5.5; P<.001), eye problems (OR, 3.0; 95% CI, 1.5-6.0; P<.001), and alopecia (OR, 4.6; 95% CI, 2.4-9.0; P<.001) were significantly associated with TGM1 variants compared with other ichthyosis genotypes studied. Skin pain (OR, 6.8; 95% CI, 1.6-61.2; P=.002), odor (OR, 5.7; 95% CI, 2.0-19.7; P<.001), and infections (OR, 3.1; 95% CI, 1.4-7.7; P=.03) were significantly associated with KRT10 pathogenic variants compared with disease-associated variants in other genes that cause ichthyosis. Pathogenic variants were identified in 869 (86.9%) participants. Most of the remaining individuals had unique phenotypes, enabling further genetic discovery. CONCLUSIONS AND RELEVANCE This cohort study expands the genotypic and phenotypic spectrum of ichthyosis, establishing associations between clinical manifestations and genotypes. Collectively, the findings may help improve clinical assessment, assist with developing customized management plans, and improve clinical course prognostication.
Barrangou R, Marraffini LA
Show All Authors

Turning CRISPR on with antibiotics

CELL HOST & MICROBE 2022 JAN 12; 30(1):12-14
CRISPR-Cas systems have the ability to integrate invasive DNA sequences to build adaptive immunity in bacteria. In this issue Dimitriu et al. show bacteriostatic antibiotics prompt CRISPR acquisition events, illustrating how environmental conditions affect complex dynamics between host and virus and the corresponding biological and genetic arms race.
Tahtouh T, Durieu E, Villiers B, Bruyere C, Nguyen TL, Fant X, Ahn KH, Khurana L, Deau E, Lindberg MF, Severe E, Miege F, Roche D, Limanton E, L'helgoual'ch JM, Burgy G, Guiheneuf S, Herault Y, Kendall DA, Carreaux F, Bazureau JP, Meijer L
Show All Authors

Structure-Activity Relationship in the Leucettine Family of Kinase Inhibitors

The protein kinase DYRK1A is involved in Alzheimer's disease, Down syndrome, diabetes, viral infections, and leukemia. Leucettines, a family of 2-aminoimidazolin-4-ones derived from the marine sponge alkaloid Leucettamine B, have been developed as pharmacological inhibitors of DYRKs ( dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases). We report here on the synthesis and structure-activity relationship (SAR) of 68 Leucettines. Leucettines were tested on 11 purified kinases and in 5 cellular assays: (1) CLK1 pre-mRNA splicing, (2) Threonine-212-Tau phosphorylation, (3) glutamate-induced cell death, (4) autophagy and (5) antagonism of ligand-activated cannabinoid receptor CB1. The Leucettine SAR observed for DYRK1A is essentially identical for CLK1, CLK4, DYRK1B, and DYRK2. DYRK3 and CLK3 are less sensitive to Leucettines. In contrast, the cellular SAR highlights correlations between inhibition of specific kinase targets and some but not all cellular effects. Leucettines deserve further development as potential therapeutics against various diseases on the basis of their molecular targets and cellular effects.
Akey CW, Singh D, Ouch C, Echeverria I, Nudelman I, Varberg JM, Yu ZL, Fang F, Shi Y, Wang JJ, Salzberg D, Song KK, Xu C, Gumbart JC, Suslov S, Unruh J, Jaspersen SL, Chait BT, Sali A, Fernandez-Martinez J, Ludtke SJ, Villa E, Rout MP
Show All Authors

Comprehensive structure and functional adaptations of the yeast nuclear pore complex

CELL 2022 JAN 20; 185(2):361-+
Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.
Stephan T, Burgess SM, Cheng H, Danko CG, Gill CA, Jarvis ED, Koepfli KP, Koltes JE, Lyons E, Ronald P, Ryder OA, Schriml LM, Soltis P, VandeWoude S, Zhou HJ, Ostrander EA, Karlsson EK
Show All Authors

Darwinian genomics and diversity in the tree of life

Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of similar to 2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.
Carlson AL, Floyd RJ, Arbona RJR, Henderson KS, Perkins C, Lipman NS
Show All Authors

Assessing Elimination of Mouse Kidney Parvovirus from Cages by Mechanical Washing

Mouse kidney parvovirus (MKPV), a newly identified parvovirus of the genus Chaphamaparvovirus, causes inclusion body nephropathy in severely immunocompromised mice and is prevalent in research mouse colonies. As nonenveloped viruses, mammalian parvoviruses are stable and generally resist thermal inactivation; however, as a novel and highly divergent parvovirus, the thermal stability of MKPV is undefined. This study aimed to evaluate the ability of cage sanitization in a mechanical washer to eliminate MKPV. Cages contaminated by MKPV-infected mice were assigned to 1 of 3 treatment groups: 1) control (bedding change only); 2) sanitization in a tunnel washer (88 degrees C final rinse for 20 s); or 3) sanitization in a tunnel washer followed by autoclave sterilization (121 degrees C for 20 min). The presence of MKPV on the cage's interior surface was assessed by PCR of cage swab extracts collected before and after cage treatment. After treatment and swabbing, each cage housed 4 MKPV-negative CD1 mice. Each group of naive CD1 mice was assigned to one of the treatment groups and was housed in a cage from this group for two, 1 wk periods. At 12, 17, and 20 wk after the first exposure, renal tissue was collected from 1 test mouse per cage and assessed for MKPV by PCR. MKPV was detected by PCR on the surface of 63% of the pretreatment cages. All cages sanitized in a tunnel washer with or without sterilization were PCR negative after treatment. Seven of 10 mice housed in untreated cages contained a mouse positive for MKPV by 20 wk after exposure. None of the mice housed in cages sanitized in a tunnel washer with or without sterilization tested positive for MKPV at any time point. This study indicates that MKPV contaminated caging can result in MKPV infection of mice, and the use of a tunnel washer at the temperature and duration evaluated was sufficient to remove MKPV nucleic acid and prevent MKPV transmission.
Kolbinger F, Di Padova F, Deodhar A, Hawkes JE, Huppertz C, Kuiper T, McInnes IB, Ritchlin CT, Rosmarin D, Schett G, Carballido JM, Hausermann P, Calonder C, Vogel B, Rondeau JM, Bruin G
Show All Authors

Secukinumab for the treatment of psoriasis, psoriatic arthritis, and axial spondyloarthritis: Physical and pharmacological properties underlie the observed clinical efficacy and safety

PHARMACOLOGY & THERAPEUTICS 2022 JAN; 229(?):? Article 107925
Psoriasis, psoriatic arthritis, and axial spondyloarthritis are systemic inflammatory diseases, each commonly manifesting as a spectrum of symptoms, complications, and comorbidities that arise differently in individual patients. Drugs targeting inflammatory cytokines common to the pathogenesis of each of these conditions have been developed, although their specific actions in the different tissues involved are variable. For a drug to be effective, it must be efficiently delivered to and locally bioactive in disease-relevant tissues. Detailed clinical data shed light on the therapeutic effects of individual biologics on specific domains or clinical manifestations of disease and assist in guiding treatment decisions. Pharmacologic, molecular, and functional properties of drugs strongly impact their observed safety and efficacy, and an understanding of these properties provides complementary insight. Secukinumab, a fully human monoclonal IgG1/kappa antibody selectively targeting interleukin (IL)-17A, has been in clinical use for >6 years in the treatment of moderate to severe psoriasis, psoriatic arthritis, and both radiographic (also known as ankylosing spondylitis) and nonradiographic axial spondyloarthritis. In this review, we discuss pharmacokinetic and pharmacodynamic data for secukinumab to introduce clinicians to the pharmacological properties of this widely used drug. Understanding how these properties affect the observed clinical efficacy, safety, and tolerability of this drug in the treatment of IL-17A-mediated systemic inflammatory diseases is important for all physicians treating these conditions. (C) 2021 The Author(s). Published by Elsevier Inc.