Skip to main content
!
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
!
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
!
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.

Publications search

Found 36604 matches. Displaying 41-50
Wang XT, Sacramento CQ, Jockusch S, Chaves OA, Tao CJ, Fintelman-Rodrigues N, Chien MC, Temerozo JR, Li XX, Kumar S, Xie W, Patel DJ, Meyer C, Garzia A, Tuschl T, Bozza PT, Russo JJ, Souza TML, Ju JY
Show All Authors

Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture

COMMUNICATIONS BIOLOGY 2022 FEB 22; 5(1):? Article 154
In this paper, the hepatitis C virus inhibitors Pibrentasvir and Ombitasvir are found to inhibit the SARS-CoV-2 exonuclease and are shown to have therapeutic potential when combined with SARS-CoV-2 polymerase inhibitors in viral cell cultures. SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.
Navrazhina K, Garcet S, Frew JW, Zheng XZ, Coats I, Guttman-Yassky E, Krueger JG
Show All Authors

The inflammatory proteome of hidradenitis suppurativa skin is more expansive than that of psoriasis vulgaris

JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY 2022 FEB; 86(2):322-330
Background: Although hidradenitis suppurativa (HS) shares some transcriptomic and cellular infiltrate features with psoriasis, their skin proteome remains unknown. Objective: To define and compare inflammatory protein biomarkers of HS and psoriasis skin. Methods: We assessed 92 inflammatory biomarkers in HS (n = 13), psoriasis (n = 11), and control skin (n = 11) using Olink high-throughput proteomics. We also correlated HS skin and blood biomarkers using proteomics and RNA sequencing. Results: We identified 57 differentially expressed proteins (DEPs) in lesional psoriasis and 64 DEPs in lesional HS skin, compared to healthy controls. Both HS and psoriasis lesional skin demonstrated a significant upregulation of T helper 1 and T helper 17 proteins. Healthy-appearing perilesional HS skin had 63 DEPs compared to healthy controls. Nonlesional HS and psoriasis skin had 24 and 7 DEPs, respectively, compared to healthy controls. Tumor necrosis factor and 8 other proteins were significantly correlated with clinical severity in perilesional HS skin (2 cm from a nodule). Limitations: Inclusion of only moderate-to-severe patients and the cohort size. Conclusion: HS has a greater inflammatory profile and is more diffusely distributed compared with psoriasis. Proteins correlated with disease severity are potential disease mediators. Perilesional skin is comparably inflamed to lesional skin, suggesting the need to treat beyond skin nodules. ( J Am Acad Dermatol 2022;86:322-30.)
McKerrow W, Wang XY, Mendez-Dorantes C, Mita P, Cao S, Grivainis M, Ding L, LaCava J, Burns KH, Boeke JD, Fenyo D
Show All Authors

LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2022 FEB 22; 119(8):? Article e2115999119
Retrotransposons are genomic DNA sequences that copy them-selves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expres-sion. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.
Wang ZQ, Forelli N, Hernandez Y, Ternei M, Brady SF
Show All Authors

Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis

NATURE COMMUNICATIONS 2022 FEB 11; 13(1):? Article 842
Chemical synthesis of secondary metabolites isolated from nature, and derivatives thereof, is still a paradigm of significance to drug development. Here the authors instead use bioinformatics to analyze a biosynthetic gene cluster found in the soil metagenome, and chemical synthesis of its predict product to produce lapcin, a dual topoisomerase I/II inhibitor with promising activity against cancer cell lines. In natural product discovery programs, the power of synthetic chemistry is often leveraged for the total synthesis and diversification of characterized metabolites. The synthesis of structures that are bioinformatically predicted to arise from uncharacterized biosynthetic gene clusters (BGCs) provides a means for synthetic chemistry to enter this process at an early stage. The recent identification of non-ribosomal peptides (NRPs) containing multiple rho-aminobenzoic acids (PABAs) led us to search soil metagenomes for BGCs that polymerize PABA. Here, we use PABA-specific adenylation-domain sequences to guide the cloning of the lap BGC directly from soil. This BGC was predicted to encode a unique N-acylated PABA and thiazole containing structure. Chemical synthesis of this structure gave lapcin, a dual topoisomerase I/II inhibitor with nM to pM IC50s against diverse cancer cell lines. The discovery of lapcin highlights the power of coupling metagenomics, bioinformatics and total chemical synthesis to unlock the biosynthetic potential contained in even complex uncharacterized BGCs.
Wang BL, Yang M, Li SJ
Show All Authors

Numb and Numblike regulate sarcomere assembly and maintenance

JOURNAL OF CLINICAL INVESTIGATION 2022 FEB 1; 132(3):? Article e139420
A sarcomere is the contractile unit of the myofibril in striated muscles such as cardiac and skeletal muscles. The assembly of sarcomeres depends on multiple molecules that serve as raw materials and participate in the assembly process. However, the mechanism of this critical assembly process remains largely unknown. Here, we found that the cell fate determinant Numb and its homolog Numblike regulated sarcomere assembly and maintenance in striated muscles. We discovered that Numb and Numblike are sarcomeric molecules that were gradually confined to the Z-disc during striated muscle development. Conditional knockout of Numb and Numblike severely compromised sarcomere assembly and its integrity and thus caused organelle dysfunction. Notably, we identified that Numb and Numblike served as sarcomeric alpha-Actin-binding proteins (ABPs) and shared a conserved domain that can bind to the barbed end of sarcomeric alpha-Actin. In vitro fluorometric alpha-Actin polymerization assay showed that Numb and Numblike also played a role in the sarcomeric alpha-Actin polymerization process. Last, we demonstrate that Numb and Numblike regulate sarcomeric alpha-Actinin-dependent (ACTN-dependent) Z-disc consolidation in the sarcomere assembly and maintenance. In summary, our studies show that Numb and its homolog Numblike regulate sarcomere assembly and maintenance in striated muscles, and demonstrate a molecular mechanism by which Numb/Numblike, sarcomeric alpha-Actin, and ACTN cooperate to control thin filament formation and Z-disc consolidation.
Saito Y, Hawley BR, Puno MR, Sarathy SN, Lima CD, Jaffrey SR, Darnell RB, Keeney S, Jain D
Show All Authors

YTHDC2 control of gametogenesis requires helicase activity but not m(6)A binding

GENES & DEVELOPMENT 2022 FEB 1; 36(3-4):180-194
In this study, Saito et al. sought to understand how the N-6-methyladenosine (m(6)A) reader and RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs. Their findings provide insight into YTHDC2's mechanism, and they propose a model in which YTHDC2 binds transcripts independent of m(6)A status and regulates gene expression during multiple stages of meiosis by distinct mechanisms. Mechanisms regulating meiotic progression in mammals are poorly understood. The N-6-methyladenosine (m(6)A) reader and 3 ' -> 5 ' RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs and is essential for meiotic entry, but how this critical cell fate change is accomplished is unknown. Here, we provide insight into its mechanism and implicate YTHDC2 in having a broad role in gene regulation during multiple meiotic stages. Unexpectedly, mutation of the m(6)A-binding pocket of YTHDC2 had no detectable effect on gametogenesis and mouse fertility, suggesting that YTHDC2 function is m(6)A-independent. Supporting this conclusion, CLIP data defined YTHDC2-binding sites on mRNA as U-rich and UG-rich motif-containing regions within 3 ' UTRs and coding sequences, distinct from the sites that contain m(6)A during spermatogenesis. Complete loss of YTHDC2 during meiotic entry did not substantially alter translation of its mRNA binding targets in whole-testis ribosome profiling assays but did modestly affect their steady-state levels. Mutation of the ATPase motif in the helicase domain of YTHDC2 did not affect meiotic entry, but it blocked meiotic prophase I progression, causing sterility. Our findings inform a model in which YTHDC2 binds transcripts independent of m(6)A status and regulates gene expression during multiple stages of meiosis by distinct mechanisms.
Radtke AJ, Chu CJ, Yaniv Z, Yao L, Marr J, Beuschel RT, Ichise H, Gola A, Kabat J, Lowekamp B, Speranza E, Croteau J, Thakur N, Jonigk D, Davis JL, Hernandez JM, Germain RN
Show All Authors

IBEX: an iterative immunolabeling and chemical bleaching method for high-content imaging of diverse tissues

NATURE PROTOCOLS 2022 FEB; 17(2):378-+
High-content imaging is needed to catalog the variety of cellular phenotypes and multicellular ecosystems present in metazoan tissues. We recently developed iterative bleaching extends multiplexity (IBEX), an iterative immunolabeling and chemical bleaching method that enables multiplexed imaging (>65 parameters) in diverse tissues, including human organs relevant for international consortia efforts. IBEX is compatible with >250 commercially available antibodies and 16 unique fluorophores, and can be easily adopted to different imaging platforms using slides and nonproprietary imaging chambers. The overall protocol consists of iterative cycles of antibody labeling, imaging and chemical bleaching that can be completed at relatively low cost in 2-5 d by biologists with basic laboratory skills. To support widespread adoption, we provide extensive details on tissue processing, curated lists of validated antibodies and tissue-specific panels for multiplex imaging. Furthermore, instructions are included on how to automate the method using competitively priced instruments and reagents. Finally, we present a software solution for image alignment that can be executed by individuals without programming experience using open-source software and freeware. In summary, IBEX is a noncommercial method that can be readily implemented by academic laboratories and scaled to achieve high-content mapping of diverse tissues in support of a Human Reference Atlas or other such applications. IBEX (iterative bleaching extends multiplexity) is an iterative immunolabeling and chemical bleaching method that enables highly multiplexed imaging in diverse tissues.
Tobari Y, Theofanopoulou C, Mori C, Sato Y, Marutani M, Fujioka S, Konno N, Suzuki K, Furutani A, Hakataya S, Yao CT, Yang EY, Tsai CR, Tang PC, Chen CF, Boeckx C, Jarvis ED, Okanoya K
Show All Authors

Oxytocin variation and brain region-specific gene expression in a domesticated avian species

GENES BRAIN AND BEHAVIOR 2022 FEB; 21(2):? Article e12780
The Bengalese finch was domesticated more than 250 years ago from the wild white-rumped munia (WRM). Similar to other domesticated species, Bengalese finches show a reduced fear response and have lower corticosterone levels, compared to WRMs. Bengalese finches and munias also have different song types. Since oxytocin (OT) has been found to be involved in stress coping and auditory processing, we tested whether the OT sequence and brain expression pattern and content differ in wild munias and domesticated Bengalese finches. We sequenced the OT from 10 wild munias and 11 Bengalese finches and identified intra-strain variability in both the untranslated and protein-coding regions of the sequence, with all the latter giving rise to synonymous mutations. Several of these changes fall in specific transcription factor-binding sites, and show either a conserved or a relaxed evolutionary trend in the avian lineage, and in vertebrates in general. Although in situ hybridization in several hypothalamic nuclei did not reveal significant differences in the number of cells expressing OT between the two strains, real-time quantitative PCR showed a significantly higher OT mRNA expression in the cerebrum of the Bengalese finches relative to munias, but a significantly lower expression in their diencephalon. Our study thus points to a brain region-specific pattern of neurochemical expression in domesticated and wild avian strains, which could be linked to domestication and the behavioral changes associated with it.
Huiting W, Dekker SL, van der Lienden JCJ, Mergener R, Musskopf MK, Furtado GV, Gerrits E, Coit D, Oghbaie M, Di Stefano LH, Schepers H, Van Waarde-Verhagen MAWH, Couzijn S, Barazzuol L, LaCava J, Kampinga HH, Bergink S
Show All Authors

Targeting DNA topoisomerases or checkpoint kinases results in an overload of chaperone systems, triggering aggregation of a metastable subproteome

ELIFE 2022 FEB 24; 11(?):? Article e70726
A loss of the checkpoint kinase ataxia telangiectasia mutated (ATM) leads to impairments in the DNA damage response, and in humans causes cerebellar neurodegeneration, and an increased risk of cancer. A loss of ATM is also associated with increased protein aggregation. The relevance and characteristics of this aggregation are still incompletely understood. Moreover, it is unclear to what extent other genotoxic conditions can trigger protein aggregation as well. Here, we show that targeting ATM, but also ATR or DNA topoisomerases, results in the widespread aggregation of a metastable, disease-associated subfraction of the proteome. Aggregation-prone model substrates, including Huntingtin exon 1 containing an expanded polyglutamine repeat, aggregate faster under these conditions. This increased aggregation results from an overload of chaperone systems, which lowers the cell-intrinsic threshold for proteins to aggregate. In line with this, we find that inhibition of the HSP70 chaperone system further exacerbates the increased protein aggregation. Moreover, we identify the molecular chaperone HSPB5 as a cell-specific suppressor of it. Our findings reveal that various genotoxic conditions trigger widespread protein aggregation in a manner that is highly reminiscent of the aggregation occurring in situations of proteotoxic stress and in proteinopathies. eLife digest Cells are constantly perceiving and responding to changes in their surroundings, and challenging conditions such as extreme heat or toxic chemicals can put cells under stress. When this happens, protein production can be affected. Proteins are long chains of chemical building blocks called amino acids, and they can only perform their roles if they fold into the right shape. Some proteins fold easily and remain folded, but others can be unstable and often become misfolded. Unfolded proteins can become a problem because they stick to each other, forming large clumps called aggregates that can interfere with the normal activity of cells, causing damage. The causes of stress that have a direct effect on protein folding are called proteotoxic stresses, and include, for example, high temperatures, which make proteins more flexible and unstable, increasing their chances of becoming unfolded. To prevent proteins becoming misfolded, cells can make 'protein chaperones', a type of proteins that help other proteins fold correctly and stay folded. The production of protein chaperones often increases in response to proteotoxic stress. However, there are other types of stress too, such as genotoxic stress, which damages DNA. It is unclear what effect genotoxic stress has on protein folding. Huiting et al. studied protein folding during genotoxic stress in human cells grown in the lab. Stress was induced by either blocking the proteins that repair DNA or by 'trapping' the proteins that release DNA tension, both of which result in DNA damage. The analysis showed that, similar to the effects of proteotoxic stress, genotoxic stress increased the number of proteins that aggregate, although certain proteins formed aggregates even without stress, particularly if they were common and relatively unstable proteins. Huiting et al.'s results suggest that aggregation increases in cells under genotoxic stress because the cells fail to produce enough chaperones to effectively fold all the proteins that need it. Indeed, Huiting et al. showed that aggregates contain many proteins that rely on chaperones, and that increasing the number of chaperones in stressed cells reduced protein aggregation. This work shows that genotoxic stress can affect protein folding by limiting the availability of chaperones, which increases protein aggregation. Remarkably, there is a substantial overlap between proteins that aggregate in diseases that affect the brain - such as Alzheimer's disease - and proteins that aggregate after genotoxic stress. Therefore, further research could focus on determining whether genotoxic stress is involved in the progression of these neurological diseases
Yang Z, Dam KMA, Bridges MD, Hoffmann MAG, DeLaitsch AT, Gristick HB, Escolano A, Gautam R, Martin MA, Nussenzweig MC, Hubbell WL, Bjorkman PJ
Show All Authors

Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer

NATURE COMMUNICATIONS 2022 FEB 8; 13(1):? Article 732
Broadly-neutralizing antibodies (bNAbs) against HIV-1 Env can protect from infection. We characterize Ab1303 and Ab1573, heterologously-neutralizing CD4-binding site (CD4bs) antibodies, isolated from sequentially-immunized macaques. Ab1303/Ab1573 binding is observed only when Env trimers are not constrained in the closed, prefusion conformation. Fab-Env cryo-EM structures show that both antibodies recognize the CD4bs on Env trimer with an 'occluded-open' conformation between closed, as targeted by bNAbs, and fully-open, as recognized by CD4. The occluded-open Env trimer conformation includes outwardly-rotated gp120 subunits, but unlike CD4-bound Envs, does not exhibit V1V2 displacement, 4-stranded gp120 bridging sheet, or co-receptor binding site exposure. Inter-protomer distances within trimers measured by double electron-electron resonance spectroscopy suggest an equilibrium between occluded-open and closed Env conformations, consistent with Ab1303/Ab1573 binding stabilizing an existing conformation. Studies of Ab1303/Ab1573 demonstrate that CD4bs neutralizing antibodies that bind open Env trimers can be raised by immunization, thereby informing immunogen design and antibody therapeutic efforts.