Skip to main content

Publications search

Found 37458 matches. Displaying 81-90
Gong R, Reynolds MJ, Carney KR, Hamilton K, Bidone TC, Alushin GM
Show All Authors

Fascin structural plasticity mediates flexible actin bundle construction

NATURE STRUCTURAL & MOLECULAR BIOLOGY 2025 2025 JAN 20; ?(?):?
Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales. Our fascin cross-bridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis and simulations show how structural plasticity enables fascin to bridge varied interfilament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncover geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable cross-links that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.
Isshiki Y, Chen X, Teater M, Karagiannidis I, Nam H, Cai W, Meydan C, Xia M, ...
Show All Authors

EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunoge...

CANCER CELL 2025 JAN 13; 43(1):?
T cell-based immunotherapies have demonstrated effectiveness in treating diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) but predicting response and understanding resistance remains a challenge. To address this, we developed syngeneic models reflecting the genetics, epigenetics, and immunology of human FL and DLBCL. We show that EZH2 inhibitors reprogram these models to re-express T cell engagement genes and render them highly immunogenic. EZH2 inhibitors do not harm tumor-controlling T cells or CAR-T cells. Instead, they reduce regulatory T cells, promote memory chimeric antigen receptor (CAR) CD8 phenotypes, and reduce exhaustion, resulting in a decreased tumor burden. Intravital 2-photon imaging shows increased CAR-T recruitment and interaction within the tumor microenvironment, improving lymphoma cell killing. Therefore, EZH2 inhibition enhances CAR-T cell efficacy through direct effects on CAR-T cells, in addition to rendering lymphoma B cells immunogenic. This approach is currently being evaluated in two clinical trials, NCT05934838 and NCT05994235, to improve immunotherapy outcomes in B cell lymphoma patients.
Wang YL, Hoang TTNN, Fan J, Gangadharan S, Venkatachalam V, Chung SH
Show All Authors

Widefield Targeted Illumination Microscopy Enables Optically-Sectioned, Motio...

LASER & PHOTONICS REVIEWS 2025 2025 OCT 6; ?(?):?
In widefield fluorescence imaging of neurons, out-of-focus and scattered light from the bright cell body often obscures nearby dim fibers and degrades their contrast. Scanning techniques can solve this problem but are limited by reduced imaging speed and increased cost. In this study, stray light in widefield imaging is greatly reduced by modulating the illumination intensity to different structures. An iterative approach is used to identify fibers by real-time image processing and target illumination to fibers by a digital micromirror device add-on to a common widefield microscope. Bright cell bodies are illuminated with minimal light intensity, and in-focus fibers with high light intensity. This procedure minimizes the background and enhances the visibility of fibers while maintaining a fast imaging speed, low photobleaching rate, and low cost. By updating the targeting pattern, illumination is maintained on the structures of interest, even in moving samples. Using this targeted illumination approach, high contrast, optically sectioned imaging of complex neurons is demonstrated in anesthetized C. elegans, ex vivo mouse brain slice, and restrained zebrafish larva, as well as high-speed imaging of dynamic changes in C. elegans.
Torrente D, Su EJ, Citalán-Madrid AF, Schielke GP, Magaoay D, Warnock M, Stev...
Show All Authors

The interaction of tPA with NMDAR1 drives neuroinflammation and neurodegenera...

JOURNAL OF NEUROINFLAMMATION 2025 JAN 14; 22(1):? Article 8
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and beta-galactosidase tPA reporter mice. We further investigate tPA's potential role in SN pathology in an alpha-synuclein mouse model of Parkinson's disease (PD). To characterize the mechanism of tPA action in alpha-synuclein-mediated pathology in the SN and to identify possible therapeutic pathways, we performed RNA-seq analysis of the SN and used multiple transgenic mouse models. These included tPA deficient mice and two newly developed transgenic mice, a knock-in model expressing endogenous levels of proteolytically inactive tPA (tPA Ala-KI) and a second model overexpressing proteolytically inactive tPA (tPA Ala-BAC). Our findings show that striatal GABAergic neurons send tPA+ projections to dopaminergic (DA)-neurons in the SN and that tPA is released from SN-derived synaptosomes upon stimulation. We also found that tPA levels in the SN increased following alpha-synuclein overexpression. Importantly, tPA deficiency protects DA-neurons from degeneration, prevents behavioral deficits, and reduces microglia activation and T-cell infiltration induced by alpha-synuclein overexpression. RNA-seq analysis indicates that tPA in the SN is required for the upregulation of genes involved in the innate and adaptive immune responses induced by alpha-synuclein overexpression. Overexpression of alpha-synuclein in tPA Ala-KI mice, expressing only proteolytically inactive tPA, confirms that tPA-mediated neuroinflammation and neurodegeneration is independent of its proteolytic activity. Moreover, overexpression of proteolytically inactive tPA in tPA Ala-BAC mice leads to increased neuroinflammation and neurodegeneration compared to mice expressing normal levels of tPA, suggesting a tPA dose response. Finally, treatment of mice with glunomab, a neutralizing antibody that selectively blocks tPA binding to the N-methyl-D-aspartate receptor-1 (NMDAR1) without affecting NMDAR1 ion channel function, identifies the tPA interaction with NMDAR1 as necessary for tPA-mediated neuroinflammation and neurodegeneration in response to alpha-synuclein-mediated neurotoxicity. Thus, our data identifies a novel pathway that promotes DA-neuron degeneration and suggests a potential therapeutic intervention for PD targeting the tPA-NMDAR1 interaction.
Jeong S, Joh CSY, Lee S, Krueger JG, Chae JH, Kim HJ, Jo SJ
Show All Authors

Single-cell transcriptomic analysis of GPP patients treated with IL-12/23 or ...

JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY 2025 2025 MAR 25; ?(?):?
Cuevas-Navarro A, Pourfarjam Y, Hu F, Rodriguez DJ, Vides A, Sang B, Fan SJ, ...
Show All Authors

Pharmacological restoration of GTP hydrolysis by mutant RAS

NATURE 2025 JAN 2; 637(8044):?
Approximately 3.4 million patients worldwide are diagnosed each year with cancers that have pathogenic mutations in one of three RAS proto-oncogenes (KRAS, NRAS and HRAS)1,2. These mutations impair the GTPase activity of RAS, leading to activation of downstream signalling and proliferation3, 4, 5-6. Long-standing efforts to restore the hydrolase activity of RAS mutants have been unsuccessful, extinguishing any consideration towards a viable therapeutic strategy7. Here we show that tri-complex inhibitors-that is, molecular glues with the ability to recruit cyclophilin A (CYPA) to the active state of RAS-have a dual mechanism of action: not only do they prevent activated RAS from binding to its effectors, but they also stimulate GTP hydrolysis. Drug-bound CYPA complexes modulate residues in the switch II motif of RAS to coordinate the nucleophilic attack on the gamma-phosphate of GTP in a mutation-specific manner. RAS mutants that were most sensitive to stimulation of GTPase activity were more susceptible to treatment than mutants in which the hydrolysis could not be enhanced, suggesting that pharmacological stimulation of hydrolysis potentiates the therapeutic effects of tri-complex inhibitors for specific RAS mutants. This study lays the foundation for developing a class of therapeutics that inhibit cancer growth by stimulating mutant GTPase activity.
Brewer JJ, Inlow K, Mooney RA, Bosch B, Olinares PDB, Marcelino LP, Chait BT,...
Show All Authors

RapA opens the RNA polymerase clamp to disrupt post-termination complexes and...

NATURE STRUCTURAL & MOLECULAR BIOLOGY 2025 2025 JAN 8; ?(?):?
Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC. We found that core RNAP in the PTC can unwind DNA and initiate RNA synthesis but is prone to producing R-loops. Nucleotide binding to RapA triggers a conformational change that opens the RNAP clamp, allowing DNA in the RNAP cleft to reanneal and dissociate. We show that RapA helps to control cytotoxic R-loop formation in vivo, likely by disrupting PTCs. We suggest that analogous ATPases acting on PTCs to suppress transcriptional noise and R-loop formation may be widespread. These results hold importance for the bacterial transcription cycle and highlight a role for RapA in maintaining genome stability.
Blaze J, Chen S, Heissel S, Alwaseem H, Macias MPL, Peter C, Molina H, Storke...
Show All Authors

Altered tRNA expression profile associated with codon-specific proteomic chan...

MOLECULAR PSYCHIATRY 2025 2025 JAN 14; ?(?):?
Suicide is a major public health concern, and the number of deaths by suicide has been increasing in recent years in the US. There are various biological risk factors for suicide, but causal molecular mechanisms remain unknown, suggesting that investigation of novel mechanisms and integrative approaches are necessary. Transfer (t)RNAs and their modifications, including cytosine methylation (m5C), have received little attention regarding their role in normal or diseased brain function, though they are dynamic mediators of protein synthesis. tRNA regulation is highly interconnected with proteomic and metabolomic outcomes, suggesting that investigating these multiple levels of molecular regulation together may elucidate more information on neural function and suicide risk. In the current study, we used an integrative 'omics' approach to probe tRNA dysregulation, including tRNA expression and tRNA m5C, proteomics, and amino acid metabolomics in prefrontal cortex from 98 subjects who died by suicide during an episode of major depressive disorder (MDD) and neurotypical controls. While no changes were detected in amino acid content, results showed increased tRNAGlyGCC expression in the suicide brain that is not driven by changes in m5C. Proteomics revealed increased expression of proteins with high glycine codon GGC content, demonstrating a strong association between isoacceptor-specific tRNA expression and proteomic outcomes in the suicide brain, which is in line with previous work linking tRNAGly with alterations in glycine-rich proteins in a translational rodent model of depression. Further, we confirmed using a rodent model that tRNAGlyGCC overexpression was sufficient to increase the expression of proteins with high glycine codon GGC content that were upregulated in the suicide brain. By characterizing the effects of MDD-suicide in human PFC tissue, we now begin to elucidate a novel molecular signature with downstream consequences for psychiatric outcomes.
Muñoz-Rojas AR, Wang AC, Pomeranz LE, Reizis EL, Stout-Delgado HW, Miranda IC...
Show All Authors

Leptin signaling maintains autonomic stability during severe influenza infect...

JOURNAL OF CLINICAL INVESTIGATION 2025 JAN 2; 135(1):? Article e182550
Fiore VF, Almagro J, Fuchs E
Show All Authors

Shaping epithelial tissues by stem cell mechanics in development and cancer

NATURE REVIEWS MOLECULAR CELL BIOLOGY 2025 2025 JAN 29; ?(?):?
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.