Skip to main content
!
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.

Publications search

Found 35955 matches. Displaying 51-60
Singer ZS, Ambrose PM, Danino T, Rice CM
Show All Authors

Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion

CELL SYSTEMS 2021 MAR 17; 12(3):210-219.e3
While decades of research have elucidated many steps of the alphavirus lifecycle, the earliest replication dynamics have remained unclear. This missing time window has obscured early replicase strand-synthesis behavior and prevented elucidation of how the first events of infection might influence subsequent viral competition. Using quantitative live-cell and single-molecule imaging, we observed the initial replicase activity and its strand preferences in situ and measured the trajectory of replication over time. Under this quantitative framework, we investigated viral competition, where one alphavirus is able to exclude superinfection by a second homologous virus. We show that this appears as an indirect phenotypic consequence of a bidirectional competition between the two species, coupled with the rapid onset of viral replication and a limited total cellular carrying capacity. Together, these results emphasize the utility of analyzing viral kinetics within single cells.
Zhao S, Chuh KN, Zhang BC, Dul BE, Thompson RE, Farrelly LA, Liu XH, Xu N, Xue Y, Roeder RG, Maze I, Muir TW, Li HT
Show All Authors

Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2021 FEB 9; 118(6):? Article e2016742118
Serotonylation of glutamine 5 on histone H3 (H3Q5ser) was recently identified as a permissive posttranslational modification that coexists with adjacent lysine 4 trimethylation (H3K4me3). While the resulting dual modification, H3K4me3Q5ser, is enriched at regions of active gene expression in serotonergic neurons, the molecular outcome underlying H3K4me3-H3Q5ser crosstalk remains largely unexplored. Herein, we examine the impact of H3Q5ser on the readers, writers, and erasers of H3K4me3. All tested H3K4me3 readers retain binding to the H3K4me3Q5ser dual modification. Of note, the PHD finger of TAF3 favors H3K4me3Q5ser, and this binding preference is dependent on the Q5ser modification regardless of H3K4 methylation states. While the activity of the H3K4 methyltransferase, MLL1, is unaffected by H3Q5ser, the corresponding H3K4me3/2 erasers, KDM5B/C and LSD1, are profoundly inhibited by the presence of the mark. Collectively, this work suggests that adjacent H3Q5ser potentiates H3K4me3 function by either stabilizing H3K4me3 from dynamic turnover or enhancing its physical readout by downstream effectors, thereby potentially providing a mechanism for fine-tuning critical gene expression programs.
Gleicher N, Barad DH, Ben-Rafael Z, Glujovsky D, Mochizuki L, Modi D, Murtinger M, Patrizio P, Orvieto R, Takahashi S, Weghofer A, Ziebe S
Show All Authors

Commentary on two recently published formal guidelines on management of "mosaic" embryos after preimplantation genetic testing for aneuploidy (PGT-A)

REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY 2021 FEB 18; 19(1):? Article 23
Two professional societies recently published opinions on the clinical management of "mosaic" results from preimplantation genetic testing for aneuploidy (PGT-A) in human blastocyst-stage embryos in associations with in vitro fertilization (IVF). We here point out three principal shortcomings: (i) Though a most recent societal opinion states that it should not be understood as an endorsement of the use of PGT-A, any discussion of how PGT-A should be clinically interpreted for all practical purposes does offer such an endorsement. (ii) The same guideline derived much of its opinion from a preceding guidance in favor of utilization of PGT-A that did not follow even minimal professional requirements for establishment of practice guidelines. (iii) Published guidelines on so-called "mosaic" embryos from both societies contradict basic biological characteristics of human preimplantation-stage embryos. They, furthermore, are clinically unvalidated and interpret results of a test, increasingly seen as harmful to IVF outcomes for many infertile women. Qualified professional organizations, therefore, should finally offer transparent guidelines about the utilization of PGT-A in association with IVF in general.
Novak JSS, Baksh SC, Fuchs E
Show All Authors

Dietary interventions as regulators of stem cell behavior in homeostasis and disease

GENES & DEVELOPMENT 2021 FEB 1; 35(3-4):?
Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.
Alabi RO, Lora J, Celen AB, Maretzky T, Blobel CP
Show All Authors

Analysis of the Conditions That Affect the Selective Processing of Endogenous Notch1 by ADAM10 and ADAM17

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021 FEB; 22(4):? Article 1846
Notch signaling is critical for controlling a variety of cell fate decisions during metazoan development and homeostasis. This unique, highly conserved signaling pathway relies on cell-to-cell contact, which triggers the proteolytic release of the cytoplasmic domain of the membrane-anchored transcription factor Notch from the membrane. A disintegrin and metalloproteinase (ADAM) proteins are crucial for Notch activation by processing its S2 site. While ADAM10 cleaves Notch1 under physiological, ligand-dependent conditions, ADAM17 mainly cleaves Notch1 under ligand-independent conditions. However, the mechanism(s) that regulate the distinct contributions of these ADAMs in Notch processing remain unclear. Using cell-based assays in mouse embryonic fibroblasts (mEFs) lacking ADAM10 and/or ADAM17, we aimed to clarify what determines the relative contributions of ADAM10 and ADAM17 to ligand-dependent or ligand-independent Notch processing. We found that EDTA-stimulated ADAM17-dependent Notch1 processing is rapid and requires the ADAM17-regulators iRhom1 and iRhom2, whereas the Delta-like 4-induced ligand-dependent Notch1 processing is slower and requires ADAM10. The selectivity of ADAM17 for EDTA-induced Notch1 processing can most likely be explained by a preference for ADAM17 over ADAM10 for the Notch1 cleavage site and by the stronger inhibition of ADAM10 by EDTA. The physiological ADAM10-dependent processing of Notch1 cannot be compensated for by ADAM17 in Adam10-/- mEFs, or by other ADAMs shown here to be able to cleave the Notch1 cleavage site, such as ADAMs9, 12, and 19. Collectively, these results provide new insights into the mechanisms underlying the substrate selectivity of ADAM10 and ADAM17 towards Notch1.
Pan CH, Chien SC, Chen CJ, Shih CM, Hsieh MH, Huang CY, Bi WF, Chan CS, Kao YT, Hsiao CY, Chiang SJ, Chiang KH, Huang JH, Liu YR, Luo JD, Huang HY, Wu CH
Show All Authors

Circulating level of microRNA-142-5p is a potential biomarker for predicting in-stent restenosis: a case-control study

BMC CARDIOVASCULAR DISORDERS 2021 FEB 8; 21(1):? Article 77
BackgroundPatients who receive percutaneous coronary intervention (PCI) have different chances of developing in-stent restenosis (ISR). To date, no predictable biomarker can be applied in the clinic. MicroRNAs (miRNAs or miRs) play critical roles in transcription regulation, and their circulating levels were reported to have potential as clinical biomarkers.MethodsIn total, 93 coronary stent-implanted patients without pregnancy, liver or renal dysfunction, malignancy, hemophilia, or autoimmune diseases were recruited in this clinical study. All recruited participants were divided into an ISR group (n=45) and a non-ISR group (n=48) based on their restenotic status as confirmed by cardiologists at the first follow-up visit (6 months after surgery). Blood samples of all participants were harvested to measure circulating levels of miRNA candidates (miR-132, miR-142-5p, miR-15b, miR-24-2, and miR-424) to evaluate whether these circulating miRNAs can be applied as predictive biomarkers of ISR.ResultsOur data indicated that circulating levels of miR-142-5p were significantly higher in the ISR population, and results from the receiver operating characteristic (ROC) curve analysis also demonstrated superior discriminatory ability of miR-142-5p in predicting patients' restenotic status. In addition, circulating levels of miR-15b, miR-24-2, and miR-424 had differential expressions in participants with diabetes, hyperlipidemia, and hypertension, respectively.ConclusionsThe current study revealed that the circulating level of miR-142-5p has potential application as a clinical biomarker for predicting the development of ISR in stent-implanted patients.
Rostol JT, Xie W, Kuryavyi V, Maguin P, Kao K, Froom R, Patel DJ, Marraffini LA
Show All Authors

The Card1 nuclease provides defence during type III CRISPR immunity

NATURE 2021 FEB 25; 590(7847):624-629
In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain(1,2). Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction endonuclease-like domain(3,4). However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases(5,6), whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity. Structural analyses of the type III CRISPR accessory protein Card1, which induces dormancy in infected hosts to provide immunity against phage infection, reveal the mechanisms by which it cleaves single-stranded RNA and DNA.
Khan T, Rahman M, Al Ali F, Huang SSY, Ata M, Zhang Q, Bastard P, Liu ZY, Jouanguy E, Beziat V, Cobat A, Nasrallah GK, Yassine HM, Smatti MK, Saeed A, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Meyts I, Abel L, Casanova JL, Hasan MR, Marr N
Show All Authors

Distinct antibody repertoires against endemic human coronaviruses in children and adults

JCI INSIGHT 2021 FEB 22; 6(4):? Article e144499
Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these "common cold" viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage immunoprecipitation sequencing. Seroprevalence of antibodies against endemic HCoVs ranged between approximately 4% and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid, and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and 52' cleavage site of the spike protein were broadly cross -reactive with peptides of epidemic human and nonhuman coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.
Taur PD, Gowri V, Pandrowala AA, Iyengar VV, Chougule A, Golwala Z, Chandak S, Agarwal R, Keni P, Dighe N, Bodhanwala M, Prabhu S, George B, Fouzia NA, Edison ES, Arunachalam AK, Madkaikar MR, Dalvi AD, Yadav RM, Bargir UA, Kambli PM, Rawat A, Das J, Joshi V, Pilania RK, Jindal AK, Bhat S, Bhattad S, Unni J, Radhakrishnan N, Raj R, Uppuluri R, Patel S, Lashkari HP, Aggarwal A, Kalra M, Udwadia Z, Bafna VS, Kanade T, Puel A, Bustamante J, Casanova JL, Desai MM
Show All Authors

Clinical and Molecular Findings in Mendelian Susceptibility to Mycobacterial Diseases: Experience From India

FRONTIERS IN IMMUNOLOGY 2021 FEB 25; 12(?):? Article 631298
Mendelian Susceptibility to Mycobacterial diseases (MSMD) are a group of innate immune defects with more than 17 genes and 32 clinical phenotypes identified. Defects in the IFN-gamma mediated immunity lead to an increased susceptibility to intracellular pathogens like mycobacteria including attenuated Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) vaccine strains and non-tuberculous environmental mycobacteria (NTM), Salmonella, fungi, parasites like Leishmania and some viruses, in otherwise healthy individuals. Mutations in the IL12R beta 1 gene are the commonest genetic defects identified. This retrospective study reports the clinical, immunological, and molecular characteristics of a cohort of 55 MSMD patients from 10 centers across India. Mycobacterial infection was confirmed by GeneXpert, Histopathology, and acid fast bacilli staining. Immunological workup included lymphocyte subset analysis, Nitro blue tetrazolium (NBT) test, immunoglobulin levels, and flow-cytometric evaluation of the IFN-gamma mediated immunity. Genetic analysis was done by next generation sequencing (NGS). Disseminated BCG-osis was the commonest presenting manifestation (82%) with a median age of presentation of 6 months due to the practice of BCG vaccination at birth. This was followed by infection with Salmonella and non-typhi Salmonella (13%), Cytomegalovirus (CMO (11%), Candida (7%), NTM (4%), and Histoplasma (2%). Thirty-six percent of patients in cohort were infected by more than one organism. This study is the largest cohort of MSMD patients reported from India to the best of our knowledge and we highlight the importance of work up for IL-12/IL-23/ISG15/IFN-gamma circuit in all patients with BCG-osis and suspected MSMD irrespective of age.
Park CY, Zhou J, Wong AK, Chen KM, Theesfeld CL, Darnell RB, Troyanskaya OG
Show All Authors

Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk

NATURE GENETICS 2021 FEB; 53(2):166-173
Despite the strong genetic basis of psychiatric disorders, the underlying molecular mechanisms are largely unmapped. RNA-binding proteins (RBPs) are responsible for most post-transcriptional regulation, from splicing to translation to localization. RBPs thus act as key gatekeepers of cellular homeostasis, especially in the brain. However, quantifying the pathogenic contribution of noncoding variants impacting RBP target sites is challenging. Here, we leverage a deep learning approach that can accurately predict the RBP target site dysregulation effects of mutations and discover that RBP dysregulation is a principal contributor to psychiatric disorder risk. RBP dysregulation explains a substantial amount of heritability not captured by large-scale molecular quantitative trait loci studies and has a stronger impact than common coding region variants. We share the genome-wide profiles of RBP dysregulation, which we use to identify DDHD2 as a candidate schizophrenia risk gene. This resource provides a new analytical framework to connect the full range of RNA regulation to complex disease.