Skip to main content

Publications search

Found 37048 matches. Displaying 11-20
Leung NY, Xu CW, Li JSS, Ganguly A, Meyerhof GT, Regimbald-Dumas Y, Lane EA, Breault DT, He X, Perrimon N, Montell C
Show All Authors

Gut tumors in flies alter the taste valence of an anti-tumorigenic bitter compound

CURRENT BIOLOGY 2024 JUN 17; 34(12):?
The sense of taste is essential for survival, as it allows animals to distinguish between foods that are nutritious from those that are toxic. However, innate responses to different tastants can be modulated or even reversed under pathological conditions. Here, we examined whether and how the internal status of an animal impacts taste valence by using Drosophila models of hyperproliferation in the gut. In all three models where we expressed proliferation -inducing transgenes in intestinal stem cells (ISCs), hyperproliferation of ISCs caused a tumor -like phenotype in the gut. While tumor -bearing flies had no deficiency in overall food intake, strikingly, they exhibited an increased gustatory preference for aristolochic acid (ARI), which is a bitter and normally aversive plant -derived chemical. ARI had anti -tumor effects in all three of our gut hyperproliferation models. For other aversive chemicals we tested that are bitter but do not have anti -tumor effects, gut tumors did not affect avoidance behaviors. We demonstrated that bitter -sensing gustatory receptor neurons (GRNs) in tumor -bearing flies respond normally to ARI. Therefore, the internal pathology of gut hyperproliferation affects neural circuits that determine taste valence postsynaptic to GRNs rather than altering taste identity by GRNs. Overall, our data suggest that increased consumption of ARI may represent an attempt at self -medication. Finally, although ARI's potential use as a chemotherapeutic agent is limited by its known toxicity in the liver and kidney, our findings suggest that tumor -bearing flies might be a useful animal model to screen for novel anti -tumor drugs.
Li TM, Zyulina V, Seltzer ES, Dacic M, Chinenov Y, Daamen AR, Veiga KR, Schwartz N, Oliver DJ, Cabahug-Zuckerman P, Lora J, Liu Y, Shipman WD, Ambler WG, Taber SF, Onel KB, Zippin JH, Rashighi M, Krueger JG, Anandasabapathy N, Rogatsky I, Jabbari A, Blobel CP, Lipsky PE, Lu TT
Show All Authors

The interferon-rich skin environment regulates Langerhans cell ADAM17 to promote photosensitivity in lupus

ELIFE 2024 JUN 11; 13(?):? Article e85914
The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.
Jones NH, Liu QW, Urnavicius L, Dahan NE, Vostal LE, Kapoor TM, Arkin MR, Cheng YF
Show All Authors

Allosteric activation of VCP, an AAA unfoldase, by small molecule mimicry

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2024 JUN 11; 121(24):? Article e2316892121
The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to similar to threefold. Our cryo-EM studies resulted in structures (ranging from similar to 2.9 to 3.7 angstrom-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li LC, Wang W, Végvá...
Show All Authors

A cell autonomous regulator of neuronal excitability modulates tau in Alzheim...

BRAIN 2024 JUN 11; 147(7):2384-2399
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology.We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease.The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease. By modelling neurons from the entorhinal cortex in silico, Rodriguez-Rodriguez et al. obtain evidence suggesting that the proto-oncogene DEK is likely to contribute to the vulnerability of these neurons to Alzheimer's disease. Reducing DEK levels in these neurons in vitro leads to changes reminiscent of early Alzheimer's disease pathology.
Darling C, Kumar S, Alexandrov Y, de Faye J, Santiago JA, Rydlová A, Bugeon L...
Show All Authors

Optical projection tomography implemented for accessibility and low cost (...

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 2024 JUN 3; 382(2274):? Article 20230101
Optical projection tomography (OPT) is a three-dimensional mesoscopic imaging modality that can use absorption or fluorescence contrast, and is widely applied to fixed and live samples in the mm-cm scale. For fluorescence OPT, we present OPT implemented for accessibility and low cost, an open-source research-grade implementation of modular OPT hardware and software that has been designed to be widely accessible by using low-cost components, including light-emitting diode (LED) excitation and cooled complementary metal-oxide-semiconductor (CMOS) cameras. Both the hardware and software are modular and flexible in their implementation, enabling rapid switching between sample size scales and supporting compressive sensing to reconstruct images from undersampled sparse OPT data, e.g. to facilitate rapid imaging with low photobleaching/phototoxicity. We also explore a simple implementation of focal scanning OPT to achieve higher resolution, which entails the use of a fan-beam geometry reconstruction method to account for variation in magnification. This article is part of the Theo Murphy meeting issue 'Open, reproducible hardware for microscopy'.
Oliveira TY, Merkenschlager J, Eisenreich T, Bortolatto J, Yao KH, Gatti DM, Churchill GA, Nussenzweig MC, Breton G
Show All Authors

Quantitative trait loci mapping provides insights into the genetic regulation of dendritic cell numbers in mouse tissues

CELL REPORTS 2024 JUN 25; 43(6):? Article 114296
To explore the influence of genetics on homeostatic regulation of dendritic cell (DC) numbers, we present a screen of DCs and their progenitors in lymphoid and non -lymphoid tissues in Collaborative Cross (CC) and Diversity Outbred (DO) mice. We report 30 and 71 loci with logarithm of the odds (LOD) scores >8.18 and ranging from 6.67 to 8.19, respectively. The analysis reveals the highly polygenic and pleiotropic architecture of this complex trait, including many of the previously identified genetic regulators of DC development and maturation. Two SNPs in genes potentially underlying variation in DC homeostasis, a splice variant in Gramd4 (rs235532740) and a missense variant in Orai3 (rs216659754), are confirmed by gene editing using CRISPRCas9. Gramd4 is a central regulator of DC homeostasis that impacts the entire DC lineage, and Orai3 regulates cDC2 numbers in tissues. Overall, the data reveal a large number of candidate genes regulating DC homeostasis in vivo .
Kimani RW
Show All Authors

Reexamining the use of race in medical algorithms: the maternal health calculator debate

FRONTIERS IN PUBLIC HEALTH 2024 JUN 13; 12(?):? Article 1417429
The concept of race is prevalent in medical, nursing, and public health literature. Clinicians often incorporate race into diagnostics, prognostic tools, and treatment guidelines. An example is the recently heavily debated use of race and ethnicity in the Vaginal Birth After Cesarean (VBAC) calculator. In this case, the critics argued that the use of race in this calculator implied that race confers immutable characteristics that affect the ability of women to give birth vaginally after a c-section. This debate is co-occurring as research continues to highlight the racial disparities in health outcomes, such as high maternal mortality among Black women compared to other racial groups in the United States. As the healthcare system contemplates the necessity of utilizing race-a social and political construct, to monitor health outcomes, it has sparked more questions about incorporating race into clinical algorithms, including pulmonary tests, kidney function tests, pharmacotherapies, and genetic testing. This paper critically examines the argument against the race-based Vaginal Birth After Cesarean (VBAC) calculator, shedding light on its implications. Moreover, it delves into the detrimental effects of normalizing race as a biological variable, which hinders progress in improving health outcomes and equity.
Azzopardi SA, Lu HY, Monette S, Rabinowitsch AI, Salmon JE, Matsunami H, Blob...
Show All Authors

Role of iRhom2 in Olfaction: Implications for Odorant Receptor Regulation and...

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2024 JUN; 25(11):? Article 6079
The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNF alpha (Tumor necrosis factor alpha) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.
Zhang YL, Yuan LK, Zhu QY, Wu JM, Nöbauer T, Zhang RJ, Xiao GH, Wang MR, Xie H, Guo ZC, Dai QH, Vaziri A
Show All Authors

A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice

NATURE BIOMEDICAL ENGINEERING 2024 2024 JUN 20; ?(?):?
Exploring the relationship between neuronal dynamics and ethologically relevant behaviour involves recording neuronal-population activity using technologies that are compatible with unrestricted animal behaviour. However, head-mounted microscopes that accommodate weight limits to allow for free animal behaviour typically compromise field of view, resolution or depth range, and are susceptible to movement-induced artefacts. Here we report a miniaturized head-mounted fluorescent mesoscope that we systematically optimized for calcium imaging at single-neuron resolution, for increased fields of view and depth of field, and for robustness against motion-generated artefacts. Weighing less than 2.5 g, the mesoscope enabled recordings of neuronal-population activity at up to 16 Hz, with 4 mu m resolution over 300 mu m depth-of-field across a field of view of 3.6 x 3.6 mm2 in the cortex of freely moving mice. We used the mesoscope to record large-scale neuronal-population activity in socially interacting mice during free exploration and during fear-conditioning experiments, and to investigate neurovascular coupling across multiple cortical regions. An optimized head-mounted fluorescent mesoscope enables large-scale calcium imaging at single-neuron resolution in freely moving mice, facilitating neurobehavioural studies during social interactions and fear-conditioning experiments.
Darling C, Kumar S, Alexandrov Y, de Faye J, Santiago JA, Rydlová A, Bugeon L, Dallman MJ, Behrens AJ, French PMW, McGinty J
Show All Authors

Optical projection tomography implemented for accessibility and low cost (OPTImAL)

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 2024 JUN 3; 382(2274):? Article 20230101
Optical projection tomography (OPT) is a three-dimensional mesoscopic imaging modality that can use absorption or fluorescence contrast, and is widely applied to fixed and live samples in the mm-cm scale. For fluorescence OPT, we present OPT implemented for accessibility and low cost, an open-source research-grade implementation of modular OPT hardware and software that has been designed to be widely accessible by using low-cost components, including light-emitting diode (LED) excitation and cooled complementary metal-oxide-semiconductor (CMOS) cameras. Both the hardware and software are modular and flexible in their implementation, enabling rapid switching between sample size scales and supporting compressive sensing to reconstruct images from undersampled sparse OPT data, e.g. to facilitate rapid imaging with low photobleaching/phototoxicity. We also explore a simple implementation of focal scanning OPT to achieve higher resolution, which entails the use of a fan-beam geometry reconstruction method to account for variation in magnification. This article is part of the Theo Murphy meeting issue 'Open, reproducible hardware for microscopy'.