Skip to main content
!
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
!
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.
!
Phase III+: The University is open for expanded research operations; only authorized personnel will be admitted on campus. More info here.

Publications search

Found 36604 matches. Displaying 61-70
Fiedorczuk K, Chen J
Show All Authors

Mechanism of CFTR correction by type I folding correctors

CELL 2022 JAN 6; 185(1):158-+
Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the Delta F508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermo-dynamically unstable. Mutating residues at the binding site rendered Delta F508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.
Dahan N, Bykov YS, Boydston EA, Fadel A, Gazi Z, Hochberg-Laufer H, Martenson J, Denic V, Shav-Tal Y, Weissman JS, Aviram N, Zalckvar E, Schuldiner M
Show All Authors

Peroxisome function relies on organelle-associated mRNA translation

SCIENCE ADVANCES 2022 JAN; 8(2):? Article eabk2141
Crucial metabolic functions of peroxisomes rely on a variety of peroxisomal membrane proteins (PMPs). While mRNA transcripts of PMPs were shown to be colocalized with peroxisomes, the process by which PMPs efficiently couple translation with targeting to the peroxisomal membrane remained elusive. Here, we combine quantitative electron microscopy with proximity-specific ribosome profiling and reveal that translation of specific PMPs occurs on the surface of peroxisomes in the yeast Saccharomyces cerevisiae. This places peroxisomes alongside chloroplasts, mitochondria, and the endoplasmic reticulum as organelles that use localized translation for ensuring correct insertion of hydrophobic proteins into their membranes. Moreover, the correct targeting of these transcripts to peroxisomes is crucial for peroxisomal and cellular function, emphasizing the importance of localized translation for cellular physiology.
Chandler CS, Bell MM, Chung SK, Veach DR, Fung EK, Punzalan B, Vargas DB, Patel M, Xu H, Guo HF, Santich BH, Zanzonico PB, Monette S, Nash GM, Cercek A, Jungbluth A, Pandit-Taskar N, Cheung NKV, Larson SM, Cheal SM
Show All Authors

Intraperitoneal Pretargeted Radioimmunotherapy for Colorectal Peritoneal Carcinomatosis

MOLECULAR CANCER THERAPEUTICS 2022 JAN; 21(1):125-137
Peritoneal carcinomatosis (PC) is considered incurable, and more effective therapies are needed. Herein we test the hypothesis that GPA33-directed intracompartmental pretargeted radioim-munotherapy (PRIT) can cure colorectal peritoneal carcinoma-tosis. Nude mice were implanted intraperitoneally with lucifer-ase-transduced GPA33-expressing SW1222 cells for aggressive peritoneal carcinomatosis (e.g., resected tumor mass 0.369 + 0.246 g; n = 17 on day 29). For GPA33-PRIT, we administered intraperitoneally a high-affinity anti-GPA33/anti-DOTA bispecific antibody (BsAb), followed by clearing agent (intrave-nous), and lutetium-177 (Lu-177) or yttrium-86 (Y-86) radio-labeled DOTA-radiohapten (intraperitoneal) for beta/gamma-emitter therapy and PET imaging, respectively. The DOTA-radiohaptens were prepared from S-2-(4-aminobenzyl)-1,4,7, 10-tetraazacyclododecane tetraacetic acid chelate (DOTA-Bn). Efficacy and toxicity of single-versus three-cycle therapy were evaluated in mice 26-27 days post-tumor implantation. Single-cycle treatment ([177Lu]LuDOTA-Bn 111 MBq; tumor dose: 4,992 cGy) significantly prolonged median survival (MS) approx-imately 2-fold to 84.5 days in comparison with controls (P = 0.007). With three-cycle therapy (once weekly, total 333 MBq; tumor dose: 14,975 cGy), 6/8 (75%) survived long-term (MS > 183 days). Furthermore, for these treated long-term survivors, 1 mouse was completely disease free (microscopic "cure") at necropsy; the others showed stabilized disease, which was detect-able during PET-CT using [86Y]DOTA-Bn. Treatment controls had MS ranging from 42-52.5 days (P < 0.001) and 19/20 mice succumbed to progressive intraperitoneal disease by 69 days. Multi-cycle GPA33 DOTA-PRIT significantly prolongs survival with reversible myelosuppression and no chronic marrow (929 cGy to blood) or kidney (982 cGy) radiotoxicity, with therapeutic indices of 12 for blood and 12 for kidneys. MTD was not reached.
Babunovic GH, DeJesus MA, Bosch B, Chase MR, Barbier T, Dickey AK, Bryson BD, Rock JM, Fortune SM
Show All Authors

CRISPR Interference Reveals That All-Trans-Retinoic Acid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A

MBIO 2022 JAN-FEB; 13(1):? Article e03683-21
Macrophages are a protective replicative niche for Mycobacterium tuberculosis (Mtb) but can kill the infecting bacterium when appropriately activated. To identify mechanisms of clearance, we compared levels of bacterial restriction by human macrophages after treatment with 26 compounds, including some currently in clinical trials for tuberculosis. All-transretinoic acid (ATRA), an active metabolite of vitamin A, drove the greatest increase in Mtb control. Bacterial clearance was transcriptionally and functionally associated with changes in macrophage cholesterol trafficking and lipid metabolism. To determine how these macrophage changes affected bacterial control, we performed the first Mtb CRISPR interference screen in an infection model, identifying Mtb genes specifically required to survive in ATRA-activated macrophages. These data showed that ATRA treatment starves Mtb of cholesterol and the downstream metabolite propionyl coenzyme A (propionyl-CoA). Supplementation with sources of propionyl-CoA, including cholesterol, abrogated the restrictive effect of ATRA. This work demonstrates that targeting the coupled metabolism of Mtb and the macrophage improves control of infection and that it is possible to genetically map the mode of bacterial death using CRISPR interference. IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a leading cause of death due to infectious disease. Improving the immune response to tuberculosis holds promise for fighting the disease but is limited by our lack of knowledge as to how the immune system kills M. tuberculosis. Our research identifies a potent way to make relevant immune cells more effective at fighting M. tuberculosis and then uses paired human and bacterial genomic methods to determine the mechanism of that improved bacterial clearance.
Cridland JM, Majane AC, Zhao L, Begun DJ
Show All Authors

Population biology of accessory gland-expressed de novo genes in Drosophila melanogaster

GENETICS 2022 JAN; 220(1):? Article iyab207
Early work on de novo gene discovery in Drosophila was consistent with the idea that many such genes have male-biased patterns of expression, including a large number expressed in the testis. However, there has been little formal analysis of variation in the abundance and properties of de novo genes expressed in different tissues. Here, we investigate the population biology of recently evolved de novo genes expressed in the Drosophila melanogaster accessory gland, a somatic male tissue that plays an important role in male and female fertility and the post mating response of females, using the same collection of inbred lines used previously to identify testis-expressed de novo genes, thus allowing for direct cross tissue comparisons of these genes in two tissues of male reproduction. Using RNA-seq data, we identify candidate de novo genes located in annotated intergenic and intronic sequence and determine the properties of these genes including chromosomal location, expression, abundance, and coding capacity. Generally, we find major differences between the tissues in terms of gene abundance and expression, though other properties such as transcript length and chromosomal distribution are more similar. We also explore differences between regulatory mechanisms of de novo genes in the two tissues and how such differences may interact with selection to produce differences in D. melanogaster de novo genes expressed in the two tissues.
Mirman Z, Sasi NK, King A, Chapman JR, de Lange T
Show All Authors

53BP1-shieldin-dependent DSB processing in BRCA1-deficient cells requires CST-Pol alpha-primase fill-in synthesis

NATURE CELL BIOLOGY 2022 JAN; 24(1):51-+
Mirman et al. report that the primary function of the shieldin complex in double-strand break repair in BRCA1-deficient cells is the recruitment of the CST-Pol alpha-primase complex to conduct fill-in synthesis. The efficacy of poly(ADP)-ribose polymerase 1 inhibition (PARPi) in BRCA1-deficient cells depends on 53BP1 and shieldin, which have been proposed to limit single-stranded DNA at double-strand breaks (DSBs) by blocking resection and/or through CST-Pol alpha-primase-mediated fill-in. We show that primase (like 53BP1-shieldin and CST-Pol alpha) promotes radial chromosome formation in PARPi-treated BRCA1-deficient cells and demonstrate shieldin-CST-Pol alpha-primase-dependent incorporation of BrdU at DSBs. In the absence of 53BP1 or shieldin, radial formation in BRCA1-deficient cells was restored by the tethering of CST near DSBs, arguing that in this context, shieldin acts primarily by recruiting CST. Furthermore, a SHLD1 mutant defective in CST binding (SHLD1 Delta) was non-functional in BRCA1-deficient cells and its function was restored after reconnecting SHLD1 Delta to CST. Interestingly, at dysfunctional telomeres and at DNA breaks in class switch recombination where CST has been implicated, SHLD1 Delta was fully functional, perhaps because these DNA ends carry CST recognition sites that afford SHLD1-independent binding of CST. These data establish that in BRCA1-deficient cells, CST-Pol alpha-primase is the major effector of shieldin-dependent DSB processing.
Alexander RP, Kitchen RR, Tosar JP, Roth M, Mestdagh P, Max KEA, Rozowsky J, Kaczor-Urbanowicz KE, Chang JS, Balaj L, Losic B, Van Nostrand EL, LaPlante E, Mateescu B, White BS, Yu RS, Milosavljevic A, Stolovitzky G, Spengler RM
Show All Authors

Open Problems in Extracellular RNA Data Analysis: Insights From an ERCC Online Workshop

FRONTIERS IN GENETICS 2022 JAN 3; 12(?):? Article 778416
We now know RNA can survive the harsh environment of biofluids when encapsulated in vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form the basis of new strategies for disease treatment. The Extracellular RNA Communication Consortium (ERCC) hosted a two-day online workshop (April 19-20, 2021) on the unique challenges of exRNA data analysis. The goal was to foster an open dialog about best practices and discuss open problems in the field, focusing initially on small exRNA sequencing data. Video recordings of workshop presentations and discussions are available (https://exRNA.org/exRNAdata2021-video). There were three target audiences: experimentalists who generate exRNA sequencing data, computational and data scientists who work with those groups to analyze their data, and experimental and data scientists new to the field. Here we summarize issues explored during the workshop, including progress on an effort to develop an exRNA data analysis challenge to engage the community in solving some of these open problems.
Lewin HA, Richards S, Aiden EL, Allende ML, Archibald JM, Balint M, Barker KB, Baumgartner B, Belov K, Bertorelle G, Blaxter ML, Cai J, Caperello ND, Carlson K, Castilla-Rubio JC, Chaw SM, Chen L, Childers AK, Coddington JA, Conde DA, Corominas M, Crandall KA, Crawford AJ, DiPalma F, Durbin R, Ebenezer TE, Edwards SV, Fedrigo O, Flicek P, Formenti G, Gibbs RA, Gilbert MTP, Goldstein MM, Graves JM, Greely HT, Grigoriev IV, Hackett KJ, Hall N, Haussler D, Helgen KM, Hogg CJ, Isobe S, Jakobsen KS, Janke A, Jarvis ED, Johnson WE, Jones SJM, Karlsson EK, Kersey PJ, Kim JH, Kress WJ, Kuraku S, Lawniczak MKN, Leebens-Mack JH, Li XY, Lindblad-Toh K, Liu X, Lopez JV, Marques-Bonet T, Mazard S, Mazet JAK, Mazzoni CJ, Myers EW, O'Neill RJ, Paez S, Park H, Robinson GE, Roquet C, Ryder OA, Sabir JSM, Shaffer HB, Shank TM, Sherkow JS, Soltis PS, Tang BP, Tedersoo L, Uliano-Silva M, Wang K, Wei XF, Wetzer R, Wilson JL, Xu X, Yang HM, Yoder AD, Zhang GJ
Show All Authors

The Earth BioGenome Project 2020: Starting the clock

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2022 JAN 25; 119(4):? Article e2115635118
Li L, Koirala B, Hernandez Y, MacIntyre LW, Ternei MA, Russo R, Brady SF
Show All Authors

Identification of structurally diverse menaquinone-binding antibiotics with in vivo activity against multidrug-resistant pathogens

NATURE MICROBIOLOGY 2022 JAN; 7(1):120-+
(Meta)genomic mining, bioinformatic prediction and chemical synthesis reveal biosynthetic gene clusters encoding structurally new menaquinone-binding antibiotics that are active against multidrug-resistant Staphylococcus aureus in vivo and Mycobacterium tuberculosis in vitro. The emergence of multidrug-resistant bacteria poses a threat to global health and necessitates the development of additional in vivo active antibiotics with diverse modes of action. Directly targeting menaquinone (MK), which plays an important role in bacterial electron transport, is an appealing, yet underexplored, mode of action due to a dearth of MK-binding molecules. Here we combine sequence-based metagenomic mining with a motif search of bioinformatically predicted natural product structures to identify six biosynthetic gene clusters that we predicted encode MK-binding antibiotics (MBAs). Their predicted products (MBA1-6) were rapidly accessed using a synthetic bioinformatic natural product approach, which relies on bioinformatic structure prediction followed by chemical synthesis. Among these six structurally diverse MBAs, four make up two new MBA structural families. The most potent member of each new family (MBA3, MBA6) proved effective at treating methicillin-resistant Staphylococcus aureus infection in a murine peritonitis-sepsis model. The only conserved feature present in all MBAs is the sequence 'GXLXXXW', which we propose represents a minimum MK-binding motif. Notably, we found that a subset of MBAs were active against Mycobacterium tuberculosis both in vitro and in macrophages. Our findings suggest that naturally occurring MBAs are a structurally diverse and untapped class of mechanistically interesting, in vivo active antibiotics.
Cho A, Gaebler C, Olveira T, Ramos V, Saad M, Lorenzi JCC, Gazumyan A, Moir S, Caskey M, Chun TW, Nussenzweig MC
Show All Authors

Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2022 JAN 25; 119(4):? Article e2117630119
HIV-1 infection produces a long-lived reservoir of latently infected CD4(+) T cells that represents the major barrier to HIV-1 cure. The reservoir contains both intact and defective proviruses, but only the proviruses that are intact can reinitiate infection upon cessation of antiretroviral therapy (ART). Here we combine four-color quantitative PCR and next-generation sequencing (Q4PCR) to distinguish intact and defective proviruses and measure reservoir content longitudinally in 12 infected individuals. Q4PCR differs from other PCR-based methods in that the amplified proviruses are sequence verified as intact or defective. Samples were collected systematically over the course of up to 10 y beginning shortly after the initiation of ART. The size of the defective reservoir was relatively stable with minimal decay during the 10-y observation period. In contrast, the intact proviral reservoir decayed with an estimated half-life of 4.9 y. Nevertheless, both intact and defective proviral reservoirs are dynamic. As a result, the fraction of intact proviruses found in expanded clones of CD4(+) T cells increases over time with a concomitant decrease in overall reservoir complexity. Thus, reservoir decay measurements by Q4PCR are quantitatively similar to viral outgrowth assay (VOA) and intact proviral DNA PCR assay (IPDA) with the addition of sequence information that distinguishes intact and defective proviruses and informs reservoir dynamics. The data are consistent with the notion that intact and defective proviruses are under distinct selective pressure, and that the intact proviral reservoir is progressively enriched in expanded clones of CD4(+) T cells resulting in diminishing complexity over time.