Skip to main content

Publications search

Found 37443 matches. Displaying 61-70
Pae J, Schwan N, Ottino-Loffler B, Dewitt WS, Garg A, Bortolatto J, Vora AA, ...
Show All Authors

Transient silencing of hypermutation preserves B cell affinity during clonal ...

NATURE 2025 2025 MAR 19; ?(?):?
In the course of antibody affinity maturation, germinal centre (GC) B cells mutate their immunoglobulin heavy- and light-chain genes in a process known as somatic hypermutation (SHM)1, 2, 3-4. Panels of mutant B cells with different binding affinities for antigens are then selected in a Darwinian manner, which leads to a progressive increase in affinity among the population5. As with any Darwinian process, rare gain-of-fitness mutations must be identified and common loss-of-fitness mutations avoided6. Progressive acquisition of mutations therefore poses a risk during large proliferative bursts7, when GC B cells undergo several cell cycles in the absence of affinity-based selection8, 9, 10, 11, 12-13. Using a combination of in vivo mouse experiments and mathematical modelling, here we show that GCs achieve this balance by strongly suppressing SHM during clonal-burst-type expansion, so that a large fraction of the progeny generated by these bursts does not deviate from their ancestral genotype. Intravital imaging and image-based cell sorting of a mouse strain carrying a reporter of cyclin-dependent kinase 2 (CDK2) activity showed that B cells that are actively undergoing proliferative bursts lack the transient CDK2low 'G0-like' phase of the cell cycle in which SHM takes place. We propose a model in which inertially cycling B cells mostly delay SHM until the G0-like phase that follows their final round of division in the GC dark zone, thus maintaining affinity as they clonally expand in the absence of selection.
Martynyuk T, Ricard J, Bracchi-Ricard V, Price S, Mcgrath JR, Dougherty KJ, T...
Show All Authors

Mitigating sTNF/TNFR1 activation on VGluT2+spinal cord interneurons improves ...

BRAIN BEHAVIOR AND IMMUNITY 2025 JAN; 123(?):633-643
Spinal cord injury (SCI) is a devastating condition with 250,000 to 500,000 new cases globally each year. Respiratory infections, e.g., pneumonia and influenza are the leading cause of death after SCI. Unfortunately, there is a poor understanding of how altered neuro-immune communication impacts an individual's outcome to infection. In humans and rodents, SCI leads to maladaptive changes in the spinal-sympathetic reflex (SSR) circuit which is crucial to sympathetic function. The cause of the impaired immune function may be related to harmful neuroinflammation which is detrimental to homeostatic neuronal function, aberrant plasticity, and hyperexcitable circuits. Soluble tumor necrosis factor (sTNF) is a pro-inflammatory cytokine that is elevated in the CNS after SCI and remains elevated for several months after injury. By pharmacologically attenuating sTNF in the CNS after SCI we were able to demonstrate improved immune function. Furthermore, when we investigated the specific cellular population which may be involved in altered neuro-immune communication we reported that excessive TNFR1 activity on excitatory INs promotes immune dysfunction. Furthermore, this observation is NFk beta dependent in VGluT2 + INs. Our data is the first report of a target within the CNS, TNFR1, that contributes to SCI-induced immune dysfunction after T9-SCI and is a potential avenue for future therapeutics.
Velotta JP, Iqbal AR, Glenn ES, Franckowiak RP, Formenti G, Mountcastle J, Ba...
Show All Authors

A Complete Assembly and Annotation of the American Shad Genome Yields Insight...

GENOME BIOLOGY AND EVOLUTION 2025 JAN 24; 17(1):? Article evae276
Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance. Among the Clupeiformes, there is a large amount of variation in salinity habitat and many independent instances of salinity boundary crossing, making this taxon well-suited for studies of mechanisms underlying ecological transitions. Our initial analysis of the American shad genome reveals several unique insights for future study including: (i) that genomic repeat content is among the highest of any fish studied to date; (ii) that genome-wide heterozygosity is low and may be associated with range-wide population collapses since the 19th century; and (iii) that natural selection has acted on the branch leading to the diadromous genus Alosa. Our analysis suggests that functional targets of natural selection may include diet, particularly lipid metabolism, as well as cytoskeletal remodeling and sensing of salinity changes. Natural selection on these functions is expected in the transition from a marine to diadromous life history, particularly in the tolerance of nutrient- and ion-devoid freshwater. We anticipate that our assembly of the American shad genome will be used to test future hypotheses on adaptation to novel environments, the origins of diadromy, and adaptive variation in life history strategies, among others.
Xia MY, Lu JM, Lan JB, Teng T, Shiao R, Sun HB, Jin ZY, Liu XE, Wang J, Wu HY...
Show All Authors

Elevated IL-22 as a result of stress-induced gut leakage suppresses septal ne...

IMMUNITY 2025 JAN 14; 58(1):?
Psychological stress and its sequelae pose a major challenge to public health. Immune activation is conventionally thought to aggravate stress-related mental diseases such as anxiety disorders and depression. Here, we sought to identify potentially beneficial consequences of immune activation in response to stress. We showed that stress led to increased interleukin (IL)-22 production in the intestine as a result of stress-induced gut leakage. IL-22 was both necessary and sufficient to attenuate stress-induced anxiety behaviors in mice. More specifically, IL-22 gained access to the septal area of the brain and directly suppressed neuron activation. Furthermore, human patients with clinical depression displayed reduced IL-22 levels, and exogenous IL- 22 treatment ameliorated depressive-like behavior elicited by chronic stress in mice. Our study thus identifies a gut-brain axis in response to stress, whereby IL-22 reduces neuronal activation and concomitant anxiety behavior, suggesting that early immune activation can provide protection against psychological stress.
Gleason C, Terry SN, Hernandez MM, Jacob S, Fenyo D, Johnson JR, Deikus G, Fr...
Show All Authors

An integrated approach for the accurate detection of HERV-K HML-2 transcripti...

NUCLEIC ACIDS RESEARCH 2025 JAN 20; 53(2):? Article gkaf011
Human endogenous retroviruses (HERVs) occupy a large portion of the human genome. Most HERVs are transcriptionally silent, but they can be reactivated during pathological states such as viral infection and certain cancers. The HERV-K HML-2 clade includes elements that recently integrated have in the human germ line and often contain intact open reading frames that possibly support peptide and protein expression. Understanding HERV-K-host interactions and their potential as biomarkers is problematic due to the high similarity among different elements. Previously, we described a long-read single molecule real-time sequencing (PacBio) strategy to analyze HERV-K RNA expression profiles in different cell types. However, identifying HERV-K HML-2 proteins accurately is difficult without robust and reliable methods and reagents. Here we present a new approach to characterize the HML-2 elements that (a) are being translated and (b) produce enough protein to be detected and identified by mass spectrometry. Our data reveal that RNA expression profiling alone cannot accurately predict which HML-2 elements are responsible for protein production, as we observe several differences between the highest expressed RNAs and the elements that are the predominant source of HERV-K HML-2 protein synthesis. These studies represent an important advance toward untangling the complexity of HERV-K-host interactions.
Guironnet-Paquet A, Hamzeh-Cognasse H, Berard F, Cognasse F, Richard JC, Yoni...
Show All Authors

Therapeutic plasma exchange accelerates immune cell recovery in severe COVID-...

FRONTIERS IN IMMUNOLOGY 2025 JAN 17; 15(?):? Article 1492672
Background Immunological disturbances (anti-type I IFN auto-antibody production, cytokine storm, lymphopenia, T-cell hyperactivation and exhaustion) are responsible for disease exacerbation during severe COVID-19 infections.Methods In this study, we set up a prospective, randomised clinical trial (ClinicalTrials.gov ID: NCT04751643) and performed therapeutic plasma exchange (TPE) in severe COVID-19 patients in order to decrease excess cytokines and auto-antibodies and to assess whether adding TPE to the standard treatment (ST, including corticosteroids plus high-flow rate oxygen) could help restore immune parameters and limit the progression of acute respiratory distress syndrome (ARDS).Results As expected, performing TPE decreased the amount of anti-type I IFN auto-antibodies and improved the elimination or limited the production of certain inflammatory mediators (IL-18, IL-7, CCL2, CCL3, etc.) circulating in the blood of COVID-19 patients, compared to ST controls. Interestingly, while TPE did not influence changes in ARDS parameters throughout the protocol, it proved more effective than ST in reversing lymphopenia, preventing T-cell hyperactivation and reducing T-cell exhaustion, notably in a fraction of TPE patients who had an early favourable respiratory outcome. TPE also restored appropriate numbers of CD4+ and CD8+ T-cell memory populations and increased the number of circulating virus-specific T cells in these patients.Conclusion Our results therefore indicate that the addition of TPE sessions to the standard treatment accelerates immune cell recovery and contributes to the development of appropriate antiviral T-cell responses in some patients with severe COVID-19 disease.
Han JL, Kanelli M, Liu Y, Daristotle JL, Pardeshi A, Forster TA, Karchin A, F...
Show All Authors

On-patient medical record and mRNA therapeutics using intradermal microneedle...

NATURE MATERIALS 2025 2025 FEB 24; ?(?):?
Medical interventions often require timed series of doses, thus necessitating accurate medical record-keeping. In many global settings, these records are unreliable or unavailable at the point of care, leading to less effective treatments or disease prevention. Here we present an invisible-to-the-naked-eye on-patient medical record-keeping technology that accurately stores medical information in the patient skin as part of microneedles that are used for intradermal therapeutics. We optimize the microneedle design for both a reliable delivery of messenger RNA (mRNA) therapeutics and the near-infrared fluorescent microparticles that encode the on-patient medical record-keeping. Deep learning-based image processing enables encoding and decoding of the information with excellent temporal and spatial robustness. Long-term studies in a swine model demonstrate the safety, efficacy and reliability of this approach for the co-delivery of on-patient medical record-keeping and the mRNA vaccine encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This technology could help healthcare workers make informed decisions in circumstances where reliable record-keeping is unavailable, thus contributing to global healthcare equity.
Allington G, Mehta NH, Dennis E, Mekbib KY, Reeves B, Kiziltug E, Chen S, Zha...
Show All Authors

De novo variants disrupt an LDB1-regulated transcriptional network in congeni...

BRAIN 2025 2025 MAR 21; ?(?):?
Congenital hydrocephalus, characterized by cerebral ventriculomegaly, is among the most common and least understood paediatric neurosurgical disorders.We have identified, in the largest assembled cerebral ventriculomegaly cohort (2697 parent-proband trios), an exome-wide significant enrichment of protein-altering de novo variants in LDB1 (P = 1.11 x 10-15). Eight unrelated patients with ventriculomegaly, developmental delay and dysmorphic features harboured loss-of-function de novo variants that truncate carboxy-terminal LIM interaction domain of LDB1, which regulates assembly of LIM homeodomain-containing transcriptional modulators.Integrative multiomic analyses suggest that LDB1 is a key transcriptional regulator in ventricular neuroprogenitors through its binding to LIM-homeodomain proteins, including SMARCC1 and ARID1B. Indeed, LIM-homeodomain-containing genes carry a disproportionate burden of protein-damaging de novo variants in our cohort, with SMARCC1 (P = 5.83 x 10-9) and ARID1B (P = 1.80 x 10-17) surpassing exome-wide significance thresholds.These data identify LBD1 as a novel neurodevelopmental disorder gene and suggest that an LDB1-regulated transcriptional programme is essential for human brain morphogenesis. Allington et al. identify an enrichment of de novo variants in LDB1 in children with a neurodevelopmental syndrome featuring cerebral ventriculomegaly. The findings highlight the importance of an LDB1-regulated transcriptional network in brain morphogenesis, and suggest that exome sequencing may be useful in evaluating patients.
Zhang YX, Mackinnon R
Show All Authors

Higher- order transient structures and the principle of dynamic connectivity ...

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2025 JAN 7; 122(1):? Article e2421280121
We examine the role of higher- order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS. By invoking weak interactions that permit transient binding of M2R to M2R and GIRK to GIRK ( i-i interactions) and M2R to GIRK ( i-j interactions), the distribution patterns and electrophysiological properties of HL- 1 cells are replicated in a reaction- diffusion simulation. We propose the principle of dynamic connectivity to explain communication between protein components of a membrane signaling pathway. Dynamic connectivity is mediated by weak, transient interactions between proteins. HOTS created by weak i-i interactions, and statistical biases created by weak i-j interactions promoted by the multivalence of HOTS, are the key elements of dynamic connectivity.
Chen Q, Wang SS, Zhang JQ, Xie M, Lu B, He J, Zhen ZR, Li J, Zhu JJ, Li R, Li...
Show All Authors

JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression progr...

PROTEIN & CELL 2025 2025 FEB 12; ?(?):?
JMJD1C (Jumonji Domain Containing 1C), a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.