Skip to main content

Publications search

Found 37003 matches. Displaying 51-60
Han YL, Tan L, Zhou T, Yang LL, Carrau L, Lacko LA, Saeed M, Zhu JJ, Zhao ZP, Nilsson-Payant BE, Neto FTL, Cahir C, Giani AM, Chai JC, Li Y, Dong X, Moroziewicz D, NYSCF Global Stem Cell Array Team, Paull D, Zhang T, Koo S, Tan CSA, Danziger R, Ba Q, Feng LL, Chen ZM, Zhong AR, Wise GJ, Xiang JZ, Wang H, Schwartz RE, tenOever BR, Noggle SA, Rice CM, Qi QB, Evans T, Chen SB
Show All Authors

A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants

CELL STEM CELL 2022 OCT 6; 29(10):1475-+
Population-based studies to identify disease-associated risk alleles typically require samples from a large number of individuals. Here, we report a human-induced pluripotent stem cell (hiPSC)-based screening strat-egy to link human genetics with viral infectivity. A genome-wide association study (GWAS) identified a cluster of single-nucleotide polymorphisms (SNPs) in a cis-regulatory region of the NDUFA4 gene, which was asso-ciated with susceptibility to Zika virus (ZIKV) infection. Loss of NDUFA4 led to decreased sensitivity to ZIKV, dengue virus, and SARS-CoV-2 infection. Isogenic hiPSC lines carrying non-risk alleles of SNPs or deletion of the cis-regulatory region lower sensitivity to viral infection. Mechanistic studies indicated that loss/reduction of NDUFA4 causes mitochondrial stress, which leads to the leakage of mtDNA and thereby upregulation of type I interferon signaling. This study provides proof-of-principle for the application of iPSC arrays in GWAS and identifies NDUFA4 as a previously unknown susceptibility locus for viral infection.
An U, Shenhav L, Olson CA, Hsiao EY, Halperin E, Sankararaman S
Show All Authors

STENSL: Microbial Source Tracking with ENvironment SeLection

MSYSTEMS 2022 OCT 26; 7(5):?
Microbial source tracking analysis has emerged as a widespread technique for characterizing the properties of complex microbial communities. However, this analysis is currently limited to source environments sampled in a specific study. In order to expand the scope beyond one single study and allow the exploration of source environments using large databases and repositories, such as the Earth Microbiome Project, a source selection procedure is required. Such a procedure will allow differentiating between contributing environments and nuisance ones when the number of potential sources considered is high. Here, we introduce STENSL (microbial Source Tracking with ENvironment SeLection), a machine learning method that extends common microbial source tracking analysis by performing an unsupervised source selection and enabling sparse identification of latent source environments. By incorporating sparsity into the estimation of potential source environments, STENSL improves the accuracy of true source contribution, while significantly reducing the noise introduced by noncontributing ones. We therefore anticipate that source selection will augment microbial source tracking analyses, enabling exploration of multiple source environments from publicly available repositories while maintaining high accuracy of the statistical inference. IMPORTANCE Microbial source tracking is a powerful tool to characterize the properties of complex microbial communities. However, this analysis is currently limited to source environments sampled in a specific study. In many applications there is a clear need to consider source selection over a large array of microbial environments, external to the study. To this end, we developed STENSL (microbial Source Tracking with ENvironment SeLection), an expectation-maximization algorithm with sparsity that enables the identification of contributing sources among a large set of potential microbial environments. With the unprecedented expansion of microbiome data repositories such as the Earth Microbiome Project, recording over 200,000 samples from more than 50 types of categorized environments, STENSL takes the first steps in performing automated source exploration and selection. STENSL is significantly more accurate in identifying the contributing sources as well as the unknown source, even when considering hundreds of potential source environments, settings in which state-of-the-art microbial source tracking methods add considerable error.
Deere JU, Devineni AV
Show All Authors

Taste cues elicit prolonged modulation of feeding behavior in Drosophila

ISCIENCE 2022 OCT 21; 25(10):? Article 105159
Taste cues regulate immediate feeding behavior, but their ability to modulate future behavior has been less well studied. Pairing one taste with another can modulate subsequent feeding responses through associative learning, but this re-quires simultaneous exposure to both stimuli. We investigated whether exposure to one taste modulates future responses to other tastes even when they do not overlap in time. Using Drosophila, we found that brief exposure to sugar enhanced future feeding responses, whereas bitter exposure suppressed them. This modulation relies on neural pathways distinct from those that acutely regulate feeding or mediate learning-dependent changes. Sensory neuron activity was required not only during initial taste exposure but also afterward, suggesting that ongoing sensory activity may maintain experience-dependent changes in downstream circuits. Thus, the brain stores a memory of each taste stimulus after it disappears, enabling animals to integrate information as they sequentially sample different taste cues that signal local food quality.
Dam KMA, Barnes CO, Gristick HB, Schoofs T, Gnanapragasam PNP, Nussenzweig MC, Bjorkman PJ
Show All Authors

HIV-1 CD4-binding site germline antibody-Env structures inform vaccine design

NATURE COMMUNICATIONS 2022 OCT 17; 13(1):? Article 6123
BG24, a VRC01-class broadly neutralizing antibody (bNAb) against HIV-1 Env with relatively few somatic hypermutations (SHMs), represents a promising target for vaccine strategies to elicit CD4-binding site (CD4bs) bNAbs. To understand how SHMs correlate with BG24 neutralization of HIV-1, we report 4.1 angstrom and 3.4 angstrom single-particle cryo-EM structures of two inferred germline (iGL) BG24 precursors complexed with engineered Env-based immunogens lacking CD4bs N-glycans. Structures reveal critical Env contacts by BG24(iGL) and identify antibody light chain structural features that impede Env recognition. In addition, biochemical data and cryo-EM structures of BG24(iGL) variants bound to Envs with CD4bs glycans present provide insights into N-glycan accommodation, including structural modes of light chain adaptations in the presence of the N276(gp120) glycan. Together, these findings reveal Env regions critical for germline antibody recognition and potential sites to alter in immunogen design.
Tabansky I, Tanaka AJ, Wang JY, Zhang GL, Dujmovic I, Mader S, Jeganathan V, DeAngelis T, Funaro M, Harel A, Messina M, Shabbir M, Nursey V, DeGouvia W, Laurent M, Blitz K, Jindra P, Gudesblatt M, Regeneron Genetics Ctr, King A, Drulovic J, Yunis E, Brusic V, Shen YF, Keskin DB, Najjar S, Stern JNH
Show All Authors

Rare variants and HLA haplotypes associated in patients with neuromyelitis optica spectrum disorders

FRONTIERS IN IMMUNOLOGY 2022 OCT 4; 13(?):? Article 900605
Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.
Rosas-Umbert M, Gunst JD, Pahus MH, Olesen R, Schleimann M, Denton PW, Ramos V, Ward A, Kinloch NN, Copertino DC, Escriba T, Llano A, Brumme ZL, Jones RB, Mothe B, Brander C, Fox J, Nussenzweig MC, Fidler S, Caskey M, Tolstrup M, Sogaard OS
Show All Authors

Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8(+) T cell immunity

NATURE COMMUNICATIONS 2022 OCT 29; 13(1):? Article 6473
In simian-human immunodeficiency virus (SHIV)-infected non-human primates, broadly neutralizing antibodies (bNAbs) against the virus appear to stimulate T cell immunity. To determine whether this phenomenon also occurs in humans we measured HIV-1-specific cellular immunity longitudinally in individuals with HIV-1 starting antiviral therapy (ART) with or without adjunctive bNAb 3BNC117 treatment. Using the activation-induced marker (AIM) assay and interferon-gamma release, we observe that frequencies of Pol- and Gag-specific CD8(+) T cells, as well as Gag-induced interferon-gamma responses, are significantly higher among individuals that received adjunctive 3BNC117 compared to ART-alone at 3 and 12 months after starting ART. The observed changes in cellular immunity were directly correlated to pre-treatment 3BNC117-sensitivity. Notably, increased HIV-1-specific immunity is associated with partial or complete ART-free virologic control during treatment interruption for up to 4 years. Our findings suggest that bNAb treatment at the time of ART initiation maintains HIV-1-specific CD8(+) T cell responses that are associated with ART-free virologic control. Broadly neutralising anti-HIV-1 antibody (bNAb) administration in nonhuman primates has been shown to stimulate adaptive T cell-specific immunity, with infection prevention observed. In this work, the authors longitudinally analyse HIV-1 specific cellular immunity in HIV-1- infected individuals starting ART with or without adjunctive bNAb treatment.
Bachelez H, Barker J, Burden AD, Navarini AA, Krueger JG
Show All Authors

Generalized pustular psoriasis is a disease distinct from psoriasis vulgaris: evidence and expert opinion

EXPERT REVIEW OF CLINICAL IMMUNOLOGY 2022 OCT 3; 18(10):1033-1047
Introduction: Generalized pustular psoriasis (GPP) is a rare, severe, clinically heterogeneous disease characterized by flares of widespread, noninfectious, macroscopically visible pustules that occur with or without systemic inflammation, and are associated with significant morbidity and mortality. Historically, GPP has been classified as a variant of psoriasis vulgaris (PV, or plaque psoriasis); however, accumulating evidence indicates that these are distinct conditions, requiring different treatment approaches. Areas covered: In this perspective article we review evidence that supports the classification of GPP as distinct from PV. Expert opinion: The histopathologic and clinical appearance of GPP is distinct from that of PV and fundamental differences exist between the two conditions in terms of genetic causes and expression-related mechanisms of disease development. GPP results from dysregulation of the innate immune system, with disruption of the interleukin (IL)-36 inflammatory pathway, induction of inflammatory keratinocyte responses, and recruitment of neutrophils. PV is driven by the adaptive immune system, with a key role played by IL-17. Considering GPP as a separate disease will enable greater focus on its specific pathogenesis and the needs of patients. Many treatments for PV have insufficient efficacy in GPP and a therapeutic approach developed specifically for GPP might lead to better patient outcomes. PLAIN LANGUAGE SUMMARY Generalized pustular psoriasis (GPP) is a rare disease. During episodes of worsening disease, the immune system attacks the skin. This causes large areas of skin to become red and painful, pus-filled blisters suddenly form. Some people with GPP have a history of another, more common, skin condition called psoriasis vulgaris (PV). People with PV develop patches of scaly, itchy skin. In the past, GPP was classed as a type of PV and treated with the same medicines. However, these medicines do not work well in GPP. Researchers now understand more about what causes GPP and how it differs from PV. GPP can cause medical problems throughout the body, leading to life-threatening complications. This means that people with GPP often need urgent medical treatment in hospitals. People with PV are mostly treated outside of hospitals. Any other medical problems are not usually due to PV itself. Researchers have found several genes that are altered in people with GPP and PV, and they differ between the two diseases. For example, changes in a gene called IL36RN are common in GPP but are not seen in PV. The skin of people with these two diseases also looks different under a microscope. Knowing more about GPP and how it differs from PV will help people with GPP to be diagnosed more quickly. It will also help researchers to develop new medicines specifically for GPP, so people can receive better treatment in the future.
Caradonna SG, Paul MR, Marrocco J
Show All Authors

An allostatic epigenetic memory on chromatin footprints after double-hit acute stress

NEUROBIOLOGY OF STRESS 2022 SEP; 20(?):? Article 100475
Stress induces allostatic responses, whose limits depend on genetic background and the nature of the challenges. Allostatic load reflects the cumulation of these reponses over the course of life. Acute stress is usually associated with adaptive responses, although, depending on the intensity of the stress and individual differences , some may experience maladaptive coping that persists through life and may influence subsequent responses to stressful events, as is the case of post -traumatic stress disorder. We investigated the behavioral traits and epigenetic signatures in a double-hit mouse model of acute stress in which heterotypic stressors (acute swim stress and acute restraint stress) were applied within a 7-day interval period. The ventral hippocampus was isolated to study the footprints of chromatin accessibility driven by exposure to double-hit stress. Using ATAC sequencing to determine regions of open chromatin, we showed that depending on the number of acute stressors, several gene sets related to development, immune function, cell starvation, translation, the cytoskeleton, and DNA modification were reprogrammed in both males and females. Chromatin accessibility for transcription factor binding sites showed that stress altered the accessibility for androgen, glucocorticoid, and mineralocorticoid receptor binding sites (AREs/GREs) at the genome-wide level, with double-hit stressed mice displaying a profile unique from either single hit of acute stress. The investigation of AREs/GREs adjacent to gene coding regions revealed several stress-related genes, including Fkbp5, Zbtb16, and Ddc, whose chromatin accessibility was affected by prior exposure to stress. These data demonstrate that acute stress is not truly acute because it induces allostatic signatures that persist in the epigenome and may manifest when a second challenge hits later in life.
De novo gene origination, where a previously nongenic genomic sequence becomes genic through evolution, is increasingly recognized as an important source of novelty. Many de novo genes have been proposed to be protein-coding, and a few have been experimentally shown to yield protein products. However, the systematic study of de novo proteins has been hampered by doubts regarding their translation without the experimental observation of protein products. Using a systematic, mass-spectrometry-first computational approach, we identify 993 unannotated open reading frames with evidence of translation (utORFs) in Drosophila melanogaster. To quantify the similarity of these utORFs across Drosophila and infer phylostratigraphic age, we develop a synteny-based protein similarity approach. Combining these results with reference datasets ontissue- and life stage-specific transcription and conservation, we identify different properties amongst these utORFs. Contrary to expectations, the fastest-evolving utORFs are not the youngest evolutionarily. We observed more utORFs in the brain than in the testis. Most of the identified utORFs may be of de novo origin, even accounting for the possibility of false-negative similarity detection. Finally, sequence divergence after an inferred de novo origin event remains substantial, suggesting that de novo proteins turn over frequently. Our results suggest that there is substantial unappreciated diversity in de novo protein evolution: many more may exist than previously appreciated; there may be divergent evolutionary trajectories, and they may be gained and lost frequently. All in all, there may not exist a single characteristic model of de novo protein evolution, but instead, there may be diverse evolutionary trajectories.
Omelchenko T
Show All Authors

Cellular protrusions in 3D: Orchestrating early mouse embryogenesis

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY 2022 SEP; 129(?):63-74
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin -myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.