Skip to main content

Publications search

Found 37151 matches. Displaying 51-60
Regalado JM, Asensio AC, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy...
Show All Authors

Neural activity ramps in frontal cortex signal extended motivation during lea...

ELIFE 2024 JUL 22; 13(?):? Article RP93983
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Wu QS, Tavazoie SF
Show All Authors

Translational control by VARS in melanoma

NATURE CELL BIOLOGY 2024 JUL; 26(7):1023-1024
Aminoacyl-tRNA synthetases can promote or suppress cancer progression by regulating codon-dependent translation. A study now shows that valine aminoacyl-tRNA synthetase (VARS) promotes therapeutic resistance of melanoma to MAPK pathway inhibitors by enhancing translation of valine-enriched genes, including the fatty acid oxidation gene HADH.
Essex DW, Wang L
Show All Authors

Recent advances in vascular thiol isomerases and redox systems in platelet fu...

JOURNAL OF THROMBOSIS AND HAEMOSTASIS 2024 JUL; 21(7):1806-1818
There have been substantial advances in vascular protein disulfide isomerases (PDIs) in platelet function and thrombosis in recent years. There are 4 known prothrombotic thiol isomerases; PDI, endoplasmic reticulum protein (ERp)57, ERp72, and ERp46, and 1 antithrombotic PDI; transmembrane protein 1. A sixth PDI, ERp5, may exhibit either prothrombotic or antithrombotic properties in platelets. Studies on ERp46 in platelet function and thrombosis provide insight into the mechanisms by which these enzymes function. ERp46-catalyzed disulfide cleavage in the xIIbP3 platelet integrin occurs prior to PDI-catalyzed events to maximally support platelet aggregation. The transmembrane PDI transmembrane protein 1 counterbalances the effect of ERp46 by inhibiting activation of xIIbP3. Recent work on the prototypic PDI found that oxidized PDI supports platelet aggregation. The a ' domain of PDI is constitutively oxidized, possibly by endoplasmic reticulum oxidoreductase-1x. However, the a domain is normally reduced but becomes oxidized under conditions of oxidative stress. In contrast to the role of oxidized PDI in platelet function, reduced PDI downregulates activation of the neutrophil integrin xMP2. Intracellular platelet PDI cooperates with Nox1 and contributes to thromboxane A2 production to support platelet function. Finally, xIIb and von Willebrand factor contain free thiols, which alter the functions of these proteins, although the extent to which the PDIs regulate these functions is unclear. We are beginning to understand the substrates and functions of vascular thiol isomerases and the redox network they form that supports hemostasis and thrombosis. Moreover, the disulfide bonds these enzymes target are being defined. The clinical implications of the knowledge gained are wide-ranging.
Fu Z, MacKinnon R
Show All Authors

Structure of the flotillin complex in a native membrane environment

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2024 JUL 16; 121(29):? Article e2409334121
In this study, we used cryoelectron microscopy to determine the structures of the Flotillin protein complex, part of the Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) super- family, from cell-- derived vesicles without detergents. It forms a right- handed helical barrel consisting of 22 pairs of Flotillin1 and Flotillin2 subunits, with a diameter of 32 nm at its wider end and 19 nm at its narrower end. Oligomerization is stabilized by the C terminus, which forms two helical layers linked by a beta- strand, and coiled- coil domains that enable strong charge-charge intersubunit interactions. Flotillin interacts with membranes at both ends; through its SPFH1 domains at the wide end and the C terminus at the narrow end, facilitated by hydrophobic interactions and lipidation. The inward tilting of the SPFH domain, likely triggered by phosphorylation, suggests its role in membrane curvature induction, which could be connected to its proposed role in clathrin-- independent endocytosis. The structure suggests a shared architecture across the family of SPFH proteins and will promote further research into Flotillin's roles in cell biology.
Kimani RW
Show All Authors

Reexamining the use of race in medical algorithms: the maternal health calcul...

FRONTIERS IN PUBLIC HEALTH 2024 JUN 13; 12(?):? Article 1417429
The concept of race is prevalent in medical, nursing, and public health literature. Clinicians often incorporate race into diagnostics, prognostic tools, and treatment guidelines. An example is the recently heavily debated use of race and ethnicity in the Vaginal Birth After Cesarean (VBAC) calculator. In this case, the critics argued that the use of race in this calculator implied that race confers immutable characteristics that affect the ability of women to give birth vaginally after a c-section. This debate is co-occurring as research continues to highlight the racial disparities in health outcomes, such as high maternal mortality among Black women compared to other racial groups in the United States. As the healthcare system contemplates the necessity of utilizing race-a social and political construct, to monitor health outcomes, it has sparked more questions about incorporating race into clinical algorithms, including pulmonary tests, kidney function tests, pharmacotherapies, and genetic testing. This paper critically examines the argument against the race-based Vaginal Birth After Cesarean (VBAC) calculator, shedding light on its implications. Moreover, it delves into the detrimental effects of normalizing race as a biological variable, which hinders progress in improving health outcomes and equity.
Zhang YL, Yuan LK, Zhu QY, Wu JM, Nöbauer T, Zhang RJ, Xiao GH, Wang MR, Xie ...
Show All Authors

A miniaturized mesoscope for the large-scale single-neuron-resolved imaging o...

NATURE BIOMEDICAL ENGINEERING 2024 JUN; 8(6):?
Exploring the relationship between neuronal dynamics and ethologically relevant behaviour involves recording neuronal-population activity using technologies that are compatible with unrestricted animal behaviour. However, head-mounted microscopes that accommodate weight limits to allow for free animal behaviour typically compromise field of view, resolution or depth range, and are susceptible to movement-induced artefacts. Here we report a miniaturized head-mounted fluorescent mesoscope that we systematically optimized for calcium imaging at single-neuron resolution, for increased fields of view and depth of field, and for robustness against motion-generated artefacts. Weighing less than 2.5 g, the mesoscope enabled recordings of neuronal-population activity at up to 16 Hz, with 4 mu m resolution over 300 mu m depth-of-field across a field of view of 3.6 x 3.6 mm2 in the cortex of freely moving mice. We used the mesoscope to record large-scale neuronal-population activity in socially interacting mice during free exploration and during fear-conditioning experiments, and to investigate neurovascular coupling across multiple cortical regions. An optimized head-mounted fluorescent mesoscope enables large-scale calcium imaging at single-neuron resolution in freely moving mice, facilitating neurobehavioural studies during social interactions and fear-conditioning experiments.
Darling C, Kumar S, Alexandrov Y, de Faye J, Santiago JA, Rydlová A, Bugeon L, Dallman MJ, Behrens AJ, French PMW, McGinty J
Show All Authors

Optical projection tomography implemented for accessibility and low cost (OPTImAL)

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 2024 JUN 3; 382(2274):? Article 20230101
Optical projection tomography (OPT) is a three-dimensional mesoscopic imaging modality that can use absorption or fluorescence contrast, and is widely applied to fixed and live samples in the mm-cm scale. For fluorescence OPT, we present OPT implemented for accessibility and low cost, an open-source research-grade implementation of modular OPT hardware and software that has been designed to be widely accessible by using low-cost components, including light-emitting diode (LED) excitation and cooled complementary metal-oxide-semiconductor (CMOS) cameras. Both the hardware and software are modular and flexible in their implementation, enabling rapid switching between sample size scales and supporting compressive sensing to reconstruct images from undersampled sparse OPT data, e.g. to facilitate rapid imaging with low photobleaching/phototoxicity. We also explore a simple implementation of focal scanning OPT to achieve higher resolution, which entails the use of a fan-beam geometry reconstruction method to account for variation in magnification. This article is part of the Theo Murphy meeting issue 'Open, reproducible hardware for microscopy'.
Marin-Valencia I, Kocabas A, Rodriguez-Navas C, Miloushev VZ, González-Rodríg...
Show All Authors

Imaging brain glucose metabolism in vivo reveals propionate as a major anaple...

CELL METABOLISM 2024 JUN 4; 36(6):?
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo . This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li LC, Wang W, Végvári A, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao VCY, Roussarie JP
Show All Authors

A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons

BRAIN 2024 JUN 11; 147(7):2384-2399
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology.We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease.The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease. By modelling neurons from the entorhinal cortex in silico, Rodriguez-Rodriguez et al. obtain evidence suggesting that the proto-oncogene DEK is likely to contribute to the vulnerability of these neurons to Alzheimer's disease. Reducing DEK levels in these neurons in vitro leads to changes reminiscent of early Alzheimer's disease pathology.
Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, ...
Show All Authors

Search for long-lived particles using displaced vertices and missing transver...

PHYSICAL REVIEW D 2024 JUN 5; 109(11):? Article 112005
A search for the production of long-lived particles in proton- proton collisions at a center-of-mass energy of 13 TeVat the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016-2018, corresponding to a total integrated luminosity of 137 fb(-1). This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 mm, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gaugemediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 mm.