Skip to main content
Displaying 132 of 2899 articles.

One protein's surprising partnership with single-stranded DNA

Linker histone H1 appears capable of distinguishing between single-stranded and double-stranded DNA, suggesting that its role in maintaining our genomes extends far beyond that of keeping chromosomes compact.

A synthetic antibiotic may help turn the tide against drug-resistant bacteria

The compound attacks MRSA, C. diff, and several other deadly pathogens. Its discovery demonstrates the power of combining computational biology, genetic sequencing, and synthetic chemistry to study bacterial evolution.

Titia de Lange elected to the Royal Society

She receives the honor for elucidating mechanisms of telomere protection and genome maintenance.

How a narrow-spectrum antibiotic takes aim at C. diff

A new study reveals how the drug fidaxomicin selectively targets a dangerous pathogen without causing harm to beneficial bacteria. The findings could inform the development of new narrow-spectrum antibiotics for treating other types of infection.

Insights into a cystic fibrosis treatment may herald a novel class of drugs 

Protein folding diseases, from Alzheimer's to Gaucher's, may one day be treated by a unique class of protein corrector molecules that are already helping manage cystic fibrosis.  

A novel compound might defeat multidrug-resistant bacteria common in hospitals

Increasingly, hospitalized patients contract infections that evade current antibiotics including colistin, long used as a last treatment option. The discovery of a new colistin variant might make it possible to outmaneuver these pathogens.

Linker histones tune the length and shape of chromosomes

A new study finds that proteins known as linker histones control the complex coiling process that determines whether DNA will wind into long and thin chromosomes, made up of many small loops, or short and thick chromosomes with fewer large loops.

Study reveals how ribosomes are assembled in human cells

Three-dimensional images of human small ribosomal subunits offer the most detailed explanation for how the cell's protein-making machines are assembled.

The physics behind a water bear's lumbering gait

Animals as small and soft as tardigrades seldom have legs and almost never bother walking. But a new study finds that water bears propel themselves through sediment and soil on eight stubby legs, in a manner resembling that of insects 500,000 times their size.

Inside the protein channel that keeps bacteria alive

A novel method for studying how one crucial membrane protein functions may pave the way for a new kind of broad-spectrum antibiotic.