Skip to main content
Displaying 125 of 2850 articles.

Exploring genetic “dark matter,” researchers gain new insights into autism and stroke

For the brain to function smoothly, its cells must carefully regulate which proteins are produced and when. By studying gene regulation, researchers are now shedding light on complex brain conditions like autism and stroke.

Hinge-like protein may open new doors in cystic fibrosis treatment

Drugs known as potentiators alleviate some symptoms of cystic fibrosis. Researchers recently figured out how these compounds work—a finding that may lead to better drugs that patients can more easily afford.

Learning from experience is all in the timing

Animals learn the hard way which sights, sounds, and smells are relevant to survival. New research in flies shows that the timing of these cues plays an important role in how mental associations arise, and elucidates brain pathways involved in this process.

>

New molecular diagnostics test could help guide lupus treatments

A tool that detects glitches in gene expression could help doctors tailor treatments for lupus-related kidney damage.

New compounds could be used to treat autoimmune disorders

In autoimmune disorders, the body’s defense system erroneously attacks normal cells, leading to serious health problems. Researchers have developed new molecules that potentially could be used to treat many of these conditions.

New hope for treating a childhood brain cancer

Recent research has shown that a drug known as MI-2 can kill cells that cause a fatal brain cancer. But only now have scientists been able to explain how the compound works: by targeting cholesterol production in tumors.

New approach to treating gastrointestinal disease patches up leaky intestines

Researchers have discovered a new compound that helps fortify the intestine's inner lining, which becomes porous in inflammatory bowel diseases.  

>

New tool allows scientists to catch elusive protein in action

Scientists still have a lot to learn about the processes that trigger cell division, partly because they happen so quickly. A new chemical probe will make it possible to capture the workings of one of the key players.

>

Researchers discover a common link among diverse cancer types

Some cancers have been traced to changes in histones, proteins responsible for packaging DNA and regulating genes. Now, research from Rockefeller scientists shows that, among tumors, mutations to these proteins are a lot more common than previously suspected.

>

Enzyme structure reveals how DNA is opened up for transcription

DNA’s two strands must be separated before its code can be read, or transcribed. By studying the structure of the enzyme RNA polymerase, researchers have elucidated how DNA unwinds and becomes legible.

Study explains how geckos gracefully gallop on water

Geckos are amazingly agile. In addition to running across land and up trees, the animals can prance across the surface of water. A new study reveals how they do it.

Shape-shifting protein protects bacteria from invaders

Researchers have discovered how bacteria manage to destroy enemy DNA, while keeping their own genetic material safe.

First mapping of cells in the early human placenta to advance research on problem pregnancies

Scientists have made the first comprehensive inventory of cells present in the human placenta of the first trimester, a stage when many pregnancy complications are thought to arise. The findings could fuel new research on conditions such as preeclampsia and pre-term birth.

>

Enzyme structure helps to explain how protein factories are constructed

Researchers characterized the structure of Mdn1, an enzyme key to making ribosomes.

Sohail Tavazoie promoted to professor

Sohail Tavazoie, a physician-scientist who studies the genes that regulate a tumor’s ability to metastasize, has been promoted to professor.

>

Structural studies help explain how cancer cells resist chemotherapy

New research sheds light on how some cancer cells use molecular pumps to expel chemotherapy drugs before they have a chance to work.

Scientists map the portal to the cell’s nucleus

The gateway to cellular headquarters has 552 components. A new map that shows how all these pieces fit together could help scientists study numerous diseases.

Scientists caution that a rare childhood liver cancer can spread to the brain

A new report details three cases of secondary brain tumors in people with fibrolamellar hepatocellular carcinoma. The researchers say imaging tests could improve treatment for patients whose cancer spreads to the brain from the liver.

Molecular doorstop could be key to new tuberculosis drugs

In discovering how an antibiotic kills the bacteria that cause tuberculosis, scientists open the door to new treatments for the disease—and possibly others, as well.

>

Building the machinery that makes proteins

Scientists have used cryo-electron microscopy to capture the very first snapshots of the large ribosomal subunit—part of the ribosome responsible for forging bonds between amino acids, the building blocks of proteins—coming together.

Molecule discovered in dirt could help against multi-resistant bacteria

In mining soil for natural drugs, scientists have discovered a brand-new antibiotic potent against many bacteria. They hope it could be used to treat infections that cannot be stopped with existing drugs.

>

In brief: Tweaking RNA protects cells from harmful inflammation

New research has helped explain what goes wrong in Aicardi-Goutières syndrome, a rare brain disorder. Patients with the disease have genetic abnormalities that may put their cells at risk of accidentally triggering an antiviral response.

Günter Blobel, a Nobel laureate who redefined cell biology, has died

Günter Blobel, a Nobel Prize-winning Rockefeller biologist who discovered the mechanisms by which proteins are targeted for delivery to specific locations within cells, died February 18 at 81.

New images reveal how the ear’s sensory hairs take shape

Our ability to hear relies on tiny bundles of hair-like sensors inside the inner ear. Scientists have identified a key component of the machinery that makes these bundles grow in an orderly fashion.

New immunotherapy approach boosts body’s ability to destroy cancer cells

A new treatment may help cancer patients who don't respond to traditional immunotherapy. Findings from the first-ever clinical trial reveal that it is effective in activating immune cells that kill cancer cells.

3D imaging of fat reveals potential targets for new obesity treatments

With new imaging methods, scientists hope to make significant progress in the fight against obesity. A new report reveals striking images of neural projections within fat tissue, and clues for the development of new drugs.

Neuroscientist Vanessa Ruta promoted to associate professor

Ruta, who explores how brains produce such flexible responses to fixed stimuli, has been promoted to Gabrielle H. Reem and Herbert J. Kayden associate professor.

New study points the way to therapy for rare cancer that targets the young

Scientists have engineered a mouse model to study a rare and often-fatal form of liver cancer. They’ve used it to clarify what drives these tumors at the molecular level, and discover new drug concepts.

Targeting a single protein might treat a broad range of viruses

Scientists have identified a protein that many viruses require to spread within a host—a discovery that could lead to fighting diseases as varied as parainfluenza, West Nile, and Zika with a single drug. This finding could also lead to the development of treatments for emerging viruses.

Potential new treatment for Fragile X targets one gene to affect many

Scientists found that inhibiting a regulatory protein alters the intricate signaling chemistry that is responsible for many of the disease’s symptoms. The findings provide a path to possible therapeutics for disorders associated with Fragile X.