Skip to main content
Displaying 132 of 2909 articles.
A treatment that appears effective in cancers such as myelofibrosis consistently fails in breast cancer clinical trials. A new study explains why.

Researchers created a tool capable of comprehensively mapping crucial interactions underlying drug efficacy in one superfamily of cell receptors.

Findings bolster the idea that the functions of this protein—MeCP2—are more centered on nucleosomes, rather than other forms of DNA.

CDCA7, whose mutations alter DNA methylation pattern and cause immunodeficiency, is a novel sensor for a special class of methylated DNA.

New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.

The infectious disease specialist will continue her groundbreaking work on the transcriptomes of the pathogens behind tuberculosis and Covid.

Thomas Tuschl has devoted his career to making discoveries that bridge the gap between bench and business—and have resulted in entirely new classes of drugs.

A novel sequencing technique reveals a genetic trick TB may be using to evade the immune system and resist antibiotics.

By focusing on the emergent features of cell collectives, instead of individual cells, scientists forge a new path for understanding how organs develop their architecture.   

In developing bird skin, immature cells move around and form intricate patterns. Scientists are zeroing in on the mechanical forces guiding the process.
View
View