Skip to main content
!
Updates on the University COVID-19 response and operations available here.
!
Updates on the University COVID-19 response and operations available here.
!
Updates on the University COVID-19 response and operations available here.
Displaying 162 of 2778 articles.

How the intestine replaces and repairs itself

A new study suggests that stem cells are able to integrate cues from their surroundings and coordinate their behavior across tissue through networks of vasculature in their close vicinity.

A third vaccine dose may increase protection from Omicron

The booster appears to galvanize memory B cells into producing potent and versatile antibodies that neutralize both the original virus and its many variants.

Titia de Lange elected to the Royal Society

She receives the honor for elucidating mechanisms of telomere protection and genome maintenance.

>

Antibody therapy controls HIV for months in new clinical trial

Unlike conventional antiretroviral drugs, treatment with broadly neutralizing antibodies does not rely on vigilant daily dosing and could potentially reduce the body’s reservoir of latent viruses.

Kivanç Birsoy, expert on cancer cell metabolism, is promoted to associate professor 

Birsoy's groundbreaking research has highlighted key nutrients that cancer cells need to survive, while shedding light on debilitating mitochondrial diseases and rare genetic disorders.

New evidence that boosters may be crucial in protecting against Omicron

Researchers found that the antibodies present in people who have had COVID or taken two doses of mRNA vaccine are inadequate against Omicron. But their protective ability increases significantly after a booster dose.

How a fly's brain calculates its position in space

New research reveals how neurons in a fly's brain signal the direction in which the body is traveling. The cells appear to literally perform vector math in order to act as a biological compass.

Stem cell memories may drive wound repair—and chronic disease

Epidermal stem cells that hail from the hair follicle retain memories of their journey to the skin's surface. Those memories are a boon for wound repair, but may also contribute to chronic diseases and cancer.

Radiotherapy may explain why childhood cancer survivors often develop metabolic disease

Radiation therapy to treat childhood cancer may damage adipose tissue, causing diabetes and coronary heart disease decades later.

Scientists discover how mitochondria import antioxidants

The finding offers researchers a direct way to investigate oxidative stress and its damaging effects in aging, cancer and other diseases.

>

Novel method for trapping HIV inside its host may give rise to new antivirals

Human cells can be coaxed into preventing certain enveloped viruses (including HIV, Ebola, and parainfluenza) from escaping their membranes in the lab, a finding that could lead to novel treatments for many viral diseases.

Linker histones tune the length and shape of chromosomes

A new study finds that proteins known as linker histones control the complex coiling process that determines whether DNA will wind into long and thin chromosomes, made up of many small loops, or short and thick chromosomes with fewer large loops.

Could future coronavirus variants fully dodge our immune system?

Studying dozens of naturally occurring and laboratory-selected mutations in SARS-CoV-2, researchers found that the virus will need to pull off a genetic feat to become fully resistant to antibodies.

Lonely flies, like many humans, eat more and sleep less

If COVID-19 lockdowns scrambled your sleep schedule and stretched your waistline, you're not alone. Fruit flies quarantined in test tubes sleep too little and eat too much after only one week of social isolation.

How cells draw on memories of past inflammation to respond to new threats

A new study uncovers a near-universal mechanism behind this phenomenon, known as inflammatory memory.

Paul Cohen, expert on fat, is promoted to associate professor

Cohen, a physician-scientist exploring obesity and metabolic disease, has conducted groundbreaking research on the complex inner workings of fat tissue.

Scientists capture the moving parts of the portal to the cell’s nucleus

The proteins of the nuclear pore complex flip-flop rapidly between two orientations as they let cargo through.

As COVID-19 vaccines emerge, the search for antiviral drugs continues

Scientists are digging through drug libraries of 430,000 compounds, in pursuit of an antiviral drug that can stop the novel coronavirus in its tracks.

Telomere shortening protects against cancer

Researchers have found the first evidence that telomere shortening is not just a sign of aging, but a key component of the body's cancer prevention system.

New atlas reveals the journey of human cells throughout development

The largest map of gene expression in over 4 million human cells charts the dynamic path to forming different organs.

How cells use mechanical tension sensors to interact with their environment

In a painstaking experiment, scientists suspended a single protein filament between two microscopic beads. Their results have shed light on an elusive process in which cells receive and respond to mechanical cues.

Rockefeller's Charles M. Rice honored with Nobel Prize for research that contributed to a cure for hepatitis C

Rice will receive the 2020 Nobel Prize in Physiology or Medicine for research that led to a cure for hepatitis C, a viral disease affecting 170 million people worldwide. His lab worked on the virus for three decades and became the first to produce a version of it that could be grown and studied i...

>

How dividing cells avoid setting off false virus alarms

A new molecular structure explains how cells hold an alarm-triggering protein captive during cell division, preventing cells from targeting their own DNA.

How mechanical forces nudge tumors toward malignancy

Researchers studying two forms of skin cancer identified a long-overlooked factor determining why some tumors are more likely to metastasize than others: the physical properties of the tissue in which the cancer originates. The findings might set the stage for new ways to monitor and treat the di...

Will SARS-CoV-2 escape future drugs by mutating? The answer may be a nuanced “no.”

Scientists hope to deploy antibodies in the quest to end COVID-19. A recent study moves them closer to accomplishing a key step: finding out if the virus may acquire resistance to antibody-based drugs or vaccines, and how to potent...


How toothless mock viruses could advance research on COVID-19

Scientists have engineered four viruses resembling SARS-CoV-2 to enable faster and safer research on vaccines and treatments.

Brain study finds a molecular “off” switch for nicotine craving

In findings that might lead to better smoking-cessation tools, scientists have shown that manipulating a specific brain receptor can alter a mouse’s nicotine sensitivity.

Unique mutation reveals a new role for well-known DNA-repair gene

The discovery of a rare mutation in BRCA2, commonly known as the breast cancer gene, has shed new light on how cells safeguard their genetic material.
 

>

3D imaging of blood vessels could shed new light on cardiovascular disease

The new imaging technique enables researchers to construct a comprehensive image of blockages and other vascular injuries.

Rockefeller scientists launch a broad range of studies into novel coronavirus

Over 130 scientists in 18 labs are conducting research to advance the development of new, urgently needed approaches for the prevention and treatment of COVID-19.
View
View