Skip to main content
Displaying 171 of 2855 articles.

Rockefeller's Charles M. Rice honored with Nobel Prize for research that contributed to a cure for hepatitis C

Rice will receive the 2020 Nobel Prize in Physiology or Medicine for research that led to a cure for hepatitis C, a viral disease affecting 170 million people worldwide. His lab worked on the virus for three decades and became the first to produce a version of it that could be grown and studied i...

>

How dividing cells avoid setting off false virus alarms

A new molecular structure explains how cells hold an alarm-triggering protein captive during cell division, preventing cells from targeting their own DNA.

How mechanical forces nudge tumors toward malignancy

Researchers studying two forms of skin cancer identified a long-overlooked factor determining why some tumors are more likely to metastasize than others: the physical properties of the tissue in which the cancer originates. The findings might set the stage for new ways to monitor and treat the di...

Will SARS-CoV-2 escape future drugs by mutating? The answer may be a nuanced “no.”

Scientists hope to deploy antibodies in the quest to end COVID-19. A recent study moves them closer to accomplishing a key step: finding out if the virus may acquire resistance to antibody-based drugs or vaccines, and how to potent...


How toothless mock viruses could advance research on COVID-19

Scientists have engineered four viruses resembling SARS-CoV-2 to enable faster and safer research on vaccines and treatments.

Brain study finds a molecular “off” switch for nicotine craving

In findings that might lead to better smoking-cessation tools, scientists have shown that manipulating a specific brain receptor can alter a mouse’s nicotine sensitivity.

Unique mutation reveals a new role for well-known DNA-repair gene

The discovery of a rare mutation in BRCA2, commonly known as the breast cancer gene, has shed new light on how cells safeguard their genetic material.
 

>

3D imaging of blood vessels could shed new light on cardiovascular disease

The new imaging technique enables researchers to construct a comprehensive image of blockages and other vascular injuries.

Rockefeller scientists launch a broad range of studies into novel coronavirus

Over 130 scientists in 18 labs are conducting research to advance the development of new, urgently needed approaches for the prevention and treatment of COVID-19.

How skin cells embark on a swift yet elaborate death

Scientists have identified the mechanism that allows skin cells to sense changes in their environment, and very quickly respond to reinforce the skin's outermost layer. The findings provide insight into how errors in this process might lead to skin conditions like psoriasis.  

Rockefeller grants commercial license for the development of new HIV drugs

The novel compounds are based on so-called broadly neutralizing antibodies, molecules that make rare people's immune systems capable of fighting HIV. They could potentially yield new treatment and prevention approaches benefitting people around the world, including in developing countries.

>

Neuron-like activity detected in an unforeseen place

Scientists have identified a particular type of skin cell that looks and behaves similar to a nerve cell, prompting new questions about the body's biggest organ.

Small containers inside cells might offer new targets for cancer treatment

For reasons that have long been unclear, cells stop dividing when the pH rises inside tiny cellular compartments called lysosomes. Now scientists have found an explanation for this phenomenon, with potential implications for drug development.

Researchers discover a new mechanism in childhood kidney cancer

A problem in reader proteins that identify which gene is up for expression may cause normal cells to turn malignant during development.

Neurodegenerative diseases may be caused by molecular transportation failures inside neurons

Protein clumps are routinely found in the brains of patients with neurodegenerative diseases. Now researchers find a link between this buildup and the intracellular movement of proteasomes, molecular machines tasked with degrading protein waste inside cells.

>

Study sheds new light on how epigenetic events might spur disease

Research that began with the analysis of two developmental syndromes ultimately helped scientists understand how diverse epigenetic mechanisms can combine to drive tissue overgrowth in cancer.

The pathway to Parkinson’s takes a surprising twist

A new study finds that neurons affected in Parkinson’s disease can shut down without fully dying, allowing them to also switch off neighboring cells. The findings might give scientists a better understanding of how the condition wreaks havoc in the brain, as well as ideas for new treatments.

Lymphatic system found to play key role in hair regeneration

To grow new hair, stem cells throughout the skin must work in sync. Researchers have discovered the molecular communication tool, part of the lymphatic system, that the cells use to synchronize their activities.  

C. David Allis elected to the National Academy of Medicine

Allis, whose pioneering research established that enzymes that modify histone proteins, which package DNA in the nucleus, regulate gene expression, has been elected to the National Academy of Medicine.

Research on cell division provides new clues to how a common cancer treatment works

In studying cell division, scientists happened upon a new way of understanding how a chemotherapy compound works. The findings could make it possible to predict which patients are most likely to benefit from the drug.

Shapeshifting receptors may explain mysterious drug failures

Scientists have found that many receptors with high potential for drug discovery take a different configuration inside the body than in the test tube. The findings could explain why some promising drugs fail in clinical trials, and potentially open doors to new drug-development approaches.

Jeffrey M. Friedman to receive 2020 Breakthrough Prize in Life Sciences

Friedman's discovery of the hormone leptin has transformed our understanding of obesity.

Findings shed new light on why Zika causes birth defects in some pregnancies

Researchers have shown that antibodies against Zika might be involved in causing birth defects in babies born to infected women. The findings might provide important caveats for the development of a vaccine.

Fruit flies find their way by setting navigational goals

Navigating fruit flies do not have the luxury of GPS, but they do have a kind of neural compass. In a new study, researchers found that the animals decide which way to turn by comparing this internal compass needle to a fixed goal.

>

New molecular diagnostics test could help guide lupus treatments

A tool that detects glitches in gene expression could help doctors tailor treatments for lupus-related kidney damage.

To curb infection, bacteria direct their defenses against themselves

To fight off invading viruses, bacteria have evolved a slew of creative defense tactics. New research shows that in some cases, microbes go to great lengths to keep an infection from spreading, even destroying bits of their own genetic material.

New compounds could be used to treat autoimmune disorders

In autoimmune disorders, the body’s defense system erroneously attacks normal cells, leading to serious health problems. Researchers have developed new molecules that potentially could be used to treat many of these conditions.

Cellular rivalry promotes healthy skin development

Scientists have discovered a curious phenomenon taking place in mouse skin: cells compete with one another for the chance to develop into mature tissue. The findings indicate that this antagonism is key to creating healthy skin.

Research on repetitive worm behavior may have implications for understanding human disease

Studying microscopic worms, Rockefeller scientists have identified a brain circuit that drives repetitive behavior—providing potential clues for understanding some human psychiatric conditions.

Study pinpoints what causes relapse after cancer immunotherapy

In many cancer patients who have been treated with immunotherapy, the tumor comes back. New research identifies the cells responsible for thwarting the treatment and offers new insights into how they do it.