Skip to main content
Displaying 108 of 2850 articles.

Stem cell model offers first glimpse of early human development

The new platform’s ethically grounded approach promises to reveal much about how human embryos form during the earliest stages of pregnancy.

Innovative method identifies rare brain cell types for the first time

It also reduces the cost of a million single-cell transcriptomes from $10,000 to $700—and the time necessary down to about a day.

A new way of thinking about how organ architecture develops 

By focusing on the emergent features of cell collectives, instead of individual cells, scientists forge a new path for understanding how organs develop their architecture.   

New method tracks how brain cells age

The novel technique may offer panoramic view into the mechanisms of many diseases and the enigma of aging.

Lab-grown mini lungs could accelerate the study of respiratory diseases  

The labs of Ali Brivanlou and Charles M. Rice collaborated to refine a cell culture technology platform that grows genetically identical lung buds from human embryonic stem cells.

How the intestine replaces and repairs itself

A new study suggests that stem cells are able to integrate cues from their surroundings and coordinate their behavior across tissue through networks of vasculature in their close vicinity.

How intricate patterns arise in developing tissues

In developing bird skin, immature cells move around and form intricate patterns. Scientists are zeroing in on the mechanical forces guiding the process.

Titia de Lange elected to the Royal Society

She receives the honor for elucidating mechanisms of telomere protection and genome maintenance.

Stem cell memories may drive wound repair—and chronic disease

Epidermal stem cells that hail from the hair follicle retain memories of their journey to the skin's surface. Those memories are a boon for wound repair, but may also contribute to chronic diseases and cancer.

Study detects origins of Huntington's disease in two-week-old human embryos

The findings shed new light on the root causes of this disease, which leads to the degeneration of neurons in midlife.

How cells draw on memories of past inflammation to respond to new threats

A new study uncovers a near-universal mechanism behind this phenomenon, known as inflammatory memory.

New findings to boost IVF success rates

New research casts doubt on a genetic test used to screen would-be embryos for IVF implantation. The findings suggests that these embryos can develop into healthy babies regardless of whether or not they’ve been flagged as defective by the test.

Paul Cohen, expert on fat, is promoted to associate professor

Cohen, a physician-scientist exploring obesity and metabolic disease, has conducted groundbreaking research on the complex inner workings of fat tissue.

Synthetic “micro lungs” could take COVID-19 research to the next level

Scientists have developed stem-cell technology to mass-produce tissue cultures resembling our breathing organs. These tissues offer a powerful model in which to study how SARS-CoV-2 wreaks havoc in the lungs and to screen for new drugs.

The blood may hold clues to some of COVID-19’s most mysterious symptoms

COVID-19 causes a host of diverse complications, from lung inflammation to blood clots, heart failure, and brain fog. A team of scientists believes these attributes may have a single culprit—and that findings from research on Alzheimer’s disease might give them a leg up in finding it.

New atlas reveals the journey of human cells throughout development

The largest map of gene expression in over 4 million human cells charts the dynamic path to forming different organs.

Rockefeller's Charles M. Rice honored with Nobel Prize for research that contributed to a cure for hepatitis C

Rice will receive the 2020 Nobel Prize in Physiology or Medicine for research that led to a cure for hepatitis C, a viral disease affecting 170 million people worldwide. His lab worked on the virus for three decades and became the first to produce a version of it that could be grown and studied i...

How mechanical forces nudge tumors toward malignancy

Researchers studying two forms of skin cancer identified a long-overlooked factor determining why some tumors are more likely to metastasize than others: the physical properties of the tissue in which the cancer originates. The findings might set the stage for new ways to monitor and treat the di...

Transparent fish reveal the subtle, cellular dance in which sensory organs take shape

How do primitive cells “know” where to go during development? Scientists studying the fish equivalent of inner-ear hair cells have shown that biochemical and mechanical cues work together to orchestrate a highly complex arrangement.

Unique mutation reveals a new role for well-known DNA-repair gene

The discovery of a rare mutation in BRCA2, commonly known as the breast cancer gene, has shed new light on how cells safeguard their genetic material.
 

How skin cells embark on a swift yet elaborate death

Scientists have identified the mechanism that allows skin cells to sense changes in their environment, and very quickly respond to reinforce the skin's outermost layer. The findings provide insight into how errors in this process might lead to skin conditions like psoriasis.  

Researchers discover a new mechanism in childhood kidney cancer

A problem in reader proteins that identify which gene is up for expression may cause normal cells to turn malignant during development.

Neurodegenerative diseases may be caused by molecular transportation failures inside neurons

Protein clumps are routinely found in the brains of patients with neurodegenerative diseases. Now researchers find a link between this buildup and the intracellular movement of proteasomes, molecular machines tasked with degrading protein waste inside cells.

>

Study sheds new light on how epigenetic events might spur disease

Research that began with the analysis of two developmental syndromes ultimately helped scientists understand how diverse epigenetic mechanisms can combine to drive tissue overgrowth in cancer.

Lymphatic system found to play key role in hair regeneration

To grow new hair, stem cells throughout the skin must work in sync. Researchers have discovered the molecular communication tool, part of the lymphatic system, that the cells use to synchronize their activities.  

C. David Allis elected to the National Academy of Medicine

Allis, whose pioneering research established that enzymes that modify histone proteins, which package DNA in the nucleus, regulate gene expression, has been elected to the National Academy of Medicine.

>

Study gives clues to the origin of Huntington’s disease, and a new way to find drugs

Using a new technique to study brain development, scientists were able to trace the causes of Huntington's back to early developmental stages when the brain has only just begun to form.

Three-dimensional model illuminates key aspects of early development

Researchers have created a new 3D model of human embryonic tissue that promises to shed light on critical components of development—including processes that go awry during pregnancy complications.

Cellular rivalry promotes healthy skin development

Scientists have discovered a curious phenomenon taking place in mouse skin: cells compete with one another for the chance to develop into mature tissue. The findings indicate that this antagonism is key to creating healthy skin.

>

Researchers find genetic link to tuberculosis

Rockefeller scientists have identified a genetic condition that makes people prone to developing tuberculosis. In a British population, they found that the condition underlies one percent of cases of the disease—a finding that may ultimately lead to new treatment options.
View
View