Skip to main content
Displaying 173 of 2878 articles.

New genetic tool could identify drug targets for diseases associated with metabolic dysfunction

A novel platform for identifying metabolic gene functions has already revealed interactions between proteins and metabolites that are fundamental to cell metabolism.

Key mechanism for maintaining proper telomere length identified 

New findings describe how the enzyme CST is recruited to the end of the telomere, where it maintains telomere length with the help of subtle chemical changes made to the protein POT1.

How one scientist's fascination with RNA changed medicine forever

Thomas Tuschl has devoted his career to making discoveries that bridge the gap between bench and business—and have resulted in entirely new classes of drugs.

Double trouble at chromosome ends

The end replication problem dictates that telomeres shrink unless telomerase intervenes. But the problem is actually twice as complicated, with telomerase providing only part of the solution.

Cutting-edge methods yield surprising insights into Huntington’s disease

New findings add depth to our understanding of neurodegeneration.

Keeping telomerase in check

Telomerase could run amok, deleteriously capping damaged DNA, were it not for a first responder to DNA damage.

Luciano Marraffini wins Vilcek Prize in Biomedical Science

Marraffini is honored for his pioneering research on the study of CRISPR-Cas systems.

Innovative method identifies rare brain cell types for the first time

It also reduces the cost of a million single-cell transcriptomes from $10,000 to $700—and the time necessary down to about a day.

How the antioxidant glutathione keeps mitochondria healthy

“I believe this is going to be a very fruitful find. Every time people have studied nutrient sensing, we’ve learned a lot about biology, and many drugs have been developed as a result.”

New method tracks how brain cells age

The novel technique may offer panoramic view into the mechanisms of many diseases and the enigma of aging.
View
View