Skip to main content

Publications search

Found 34923 matches. Displaying 131-140
Ruess J
Show All Authors

Molecular noise of innate immunity shapes bacteria-phage ecologies

PLOS COMPUTATIONAL BIOLOGY 2019 JUL; 15(7):? Article e1007168
Mathematical models have been used successfully at diverse scales of
Estrogens receptors (ER) are involved in several sociosexual behaviors and fear responses. In particular, the ER alpha is important for sexual behaviors, whereas ER beta modulates anxiolytic responses. Using shRNA directed either against the ER alpha or the ER beta RNAs (or containing luciferase control) encoded within an adeno-associated viral vector, we silenced these receptors in the ventromedial nucleus of the hypothalamus (VMN) and the central amygdala (CeA). We exposed ovariectomized female rats, sequentially treated with estradiol benzoate and progesterone, to five stimuli, previously reported to elicit positive and negative affect. The subjects were housed in groups of 4 females and 3 males in a seminatural environment for several days before hormone treatment. We analyzed the frequency of a large number of behavior patterns. In addition, we performed analyses of co-occurrence in order to detect changes in the structure of behavior after infusion of the vectors. Silencing the ER alpha in the VMN disrupted lordosis and showed some anxiolytic properties in aversive situations, whereas silencing of the ER beta in this structure had no effect. This was also the case after silencing the ER alpha in the CeA. Silencing of the ER beta in this structure increased risk assessment, an expression of anxiety, and increased olfactory exploration of the environment. We hypothesize that the ER beta in the CeA has an important role in the well-established anxiolytic effects of estrogens, and that it may modulate arousal level. Furthermore, it seems that the ER alpha in the VMN is anxiogenic in aversive or threatening situations, in agreement with other studies.
Queiroz-Telles F, Mercier T, Maertens J, Sola CBS, Bonfim C, Lortholary O, Constantino-Silva RMN, Schrijvers R, Hagen F, Meis JF, Herkert PF, Breda GL, Franca JB, Rosario NA, Lanternier F, Casanova JL, Puel A, Grumach AS
Show All Authors

Successful Allogenic Stem Cell Transplantation in Patients with Inherited CARD9 Deficiency

Autosomal recessive (AR) CARD9 (caspase recruitment domain-containing protein 9) deficiency underlies invasive infections by fungi of the ascomycete phylum in previously healthy individuals at almost any age. Although CARD9 is expressed mostly by myeloid cells, the cellular basis of fungal infections in patients with inherited CARD9 deficiency is unclear. Therapy for fungal infections is challenging, with at least 20% premature mortality. We report two unrelated patients from Brazil and Morocco with AR CARD9 deficiency, both successfully treated with hematopoietic stem cell transplantation (HSCT). From childhood onward, the patients had invasive dermatophytic disease, which persisted or recurred despite multiple courses of antifungal treatment. Sanger sequencing identified homozygous missense CARD9 variants at the same residue, c.302G>T (p.R101L) in the Brazilian patient and c.301C>T (p.R101C) in the Moroccan patient. At the ages of 25 and 44 years, respectively, they received a HSCT. The first patient received a HLA-matched HSCT from his CARD9-mutated heterozygous sister. There was 100% donor chimerism at D+100. The other patient received a T cell-depleted haploidentical HSCT from his CARD9-mutated heterozygous brother. A second HSCT from the same donor was performed due to severe amegakaryocytic thrombocytopenia despite achieving full donor chimerism (100%). At last follow-up, more than 3 years after HSCT, both patients have achieved complete clinical remission and stopped antifungal therapy. HSCT might be a life-saving therapeutic option in patients with AR CARD9 deficiency. This observation strongly suggests that the pathogenesis of fungal infections in these patients is largely due to the disruption of leukocyte-mediated CARD9 immunity.
Simunovic M, Metzger JJ, Etoc F, Yoney A, Ruzo A, Martyn L, Croft G, You DS, Brivanlou AH, Siggia ED
Show All Authors

A 3D model of a human epiblast reveals BMP4-driven symmetry breaking

NATURE CELL BIOLOGY 2019 JUL; 21(7):900-910
Breaking the anterior-posterior symmetry in mammals occurs at gastrulation. Much of the signalling network underlying this process has been elucidated in the mouse; however, there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro three-dimensional model of a human epiblast whose size, cell polarity and gene expression are similar to a day 10 human epiblast. A defined dose of BMP4 spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial-to-mesenchymal transition. We show that WNT signalling and its inhibitor DKK1 play key roles in this process downstream of BMP4. Our work demonstrates that a model human epiblast can break axial symmetry despite the absence of asymmetry in the initial signal and of extra-embryonic tissues or maternal cues. Our three-dimensional model is an assay for the molecular events underlying human axial symmetry breaking.
Perea-Gomez A
Show All Authors

Loss of Cubilin, the intrinsic factor-vitamin B12 receptor, impairs

SCIENTIFIC REPORTS 2019 JUL 15; 9(?):? Article 10168
The visceral endoderm is a polarized epithelial monolayer necessary for
Arazi A, Rao DA, Berthier CC, Davidson A, Liu YY, Hoover PJ, Chicoine A, Eisenhaure TM, Jonsson AH, Li SQ, Lieb DJ, Zhang F, Slowikowski K, Browne EP, Noma A, Sutherby D, Steelman S, Smilek DE, Tosta P, Apruzzese W, Massarotti E, Dall'Era M, Park M, Kamen DL, Furie RA, Payan-Schober F, Pendergraft WF, McInnis EA, Buyon JP, Petri MA, Putterman C, Kalunian KC, Woodle ES, Lederer JA, Hildeman DA, Nusbaum C, Raychaudhuri S, Kretzler M, Anolik JH, Brenner MB, Wofsy D, Hacohen N, Diamond B, Waguespack D, Connery SM, McMahon MA, McCune WJ, Kado RB, Hsu R, Cunningham MA, Utz PJ, Pichavant M, Maecker HT, Gupta R, James JA, Guthridge JM, Fonseka C, Der E, Clancy R, Tuschl T, Suryawanshi H, Fava A, Goldman DH
Show All Authors

The immune cell landscape in kidneys of patients with lupus nephritis

NATURE IMMUNOLOGY 2019 JUL; 20(7):902-927
Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, Tcells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.
Seo JS
Show All Authors

PLANT U-BOX PROTEIN 10 negatively regulates abscisic acid response in

MYC2 is well known as a positive regulator for abscisic acid (ABA)
Farfara D, Feierman E, Richards A, Revenko AS, MacLeod RA, Norris EH, Strickland S
Show All Authors

Knockdown of circulating C1 inhibitor induces neurovascular impairment, glial cell activation, neuroinflammation, and behavioral deficits

GLIA 2019 JUL; 67(7):1359-1373
The cross-talk between blood proteins, immune cells, and brain function involves complex mechanisms. Plasma protein C1 inhibitor (C1INH) is an inhibitor of vascular inflammation that is induced by activation of the kallikrein-kinin system (KKS) and the complement system. Knockout of C1INH was previously correlated with peripheral vascular permeability via the bradykinin pathway, yet there was no evidence of its correlation with blood-brain barrier (BBB) integrity and brain function. In order to understand the effect of plasma C1INH on brain pathology via the vascular system, we knocked down circulating C1INH in wild-type (WT) mice using an antisense oligonucleotide (ASO), without affecting C1INH expression in peripheral immune cells or the brain, and examined brain pathology. Long-term elimination of endogenous C1INH in the plasma induced the activation of the KKS and peritoneal macrophages but did not activate the complement system. Bradykinin pathway proteins were elevated in the periphery and the brain, resulting in hypotension. BBB permeability, extravasation of plasma proteins into the brain parenchyma, activation of glial cells, and elevation of pro-inflammatory response mediators were detected. Furthermore, infiltrating innate immune cells were observed entering the brain through the lateral ventricle walls and the neurovascular unit. Mice showed normal locomotion function, yet cognition was impaired and depressive-like behavior was evident. In conclusion, our results highlight the important role of regulated plasma C1INH as it acts as a gatekeeper to the brain via the neurovascular system. Thus, manipulation of C1INH in neurovascular disorders might be therapeutically beneficial.
Poyhonen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q
Show All Authors

Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of Immunity (vol 39, pg 376, 2019)

Galea S, Vaughan RD
Show All Authors

Public Health, Politics, and the Creation of Meaning: A Public Health of Consequence, July 2019