Skip to main content
Displaying 1171 of 2858 articles.

New research explores how the fly brain reroutes odor information to produce flexible behavior

Some responses come automatically, like reflexes. Others vary with circumstance and experience. A once-delicious smell can be easily overlooked during a stressful moment or when it calls to mind a bout of food poisoning, for instance. This happens because, within the brain, molecules known as neu...

Widespread skewed expression of mRNA components correlate with fine tuning of protein production

Long cast as a simple link between DNA and protein, messenger RNA has never offered much intrigue. But new research at The Rockefeller University suggests the molecule is up to something unexpected. By uncovering widespread disparities in the expression of components of mRNA molecules—something...

Mosquitoes are tuned to seek out temperatures that match warm-blooded hosts

Many animals gravitate towards heat, most often to regulate their own body temperatures. In rare cases, certain species—ticks, bedbugs, and some species of mosquitoes—seek out heat for food. For female mosquitoes, finding heat is essential for survival, as they need to feast on warm-blooded prey...

Researchers discover new aspect of gene regulation and a possible target for cancer drugs

There are about 20,000 genes in the human genome, but not all are used in all cells at all times. At any given moment, a cell is converting only roughly half its genes into proteins. And of those active genes, about 75 percent are regulated by a process known as “RNA polymerase pausing.” This...

Study suggests new way to help the immune system fight off sleeping sickness parasite

Some infectious diseases are particularly difficult to treat because of their ability to evade the immune system. One such illness, African sleeping sickness, is caused by the parasite Trypanosoma brucei, transmitted by the tsetse fly, and is fatal if left untreated. The trypanosome parasite is t...

New research helps to explain how temperature shifts the circadian clock

For many living things, a roughly 24-hour internal clock governs the rhythms of life—everything from sleep in animals, to leaf opening in plants and reproduction in bread mold. Scientists have come to understand much about this internal time-keeping system, but one important aspect, its complex r...

Study reveals new mechanism in nicotine addiction

Part of the reason people find smoking difficult to quit is that each time they have a cigarette, feelings of craving, irritability and anxiety melt away. This component of addiction is known as negative reward and is controlled in part by a region of the brain called the habenula. The neurotrans...

A newly discovered signaling molecule helps neurons find their way in the developing brain

During embryonic development, billions of neurons nimbly reposition themselves within the brain and spinal cord, and connect branches to form the neural circuits that ultimately control our movements, perception, and memory. Scientists have long sought to understand the driving forces in this met...

Mutations in key cancer protein suggest new route to treatments

For years, scientists have struggled to find a way to block a protein known to play an important role in many cancers. The protein, STAT3, acts as a transcription factor—it performs the crucial task of helping convert DNA into the RNA instructions used to make new proteins. But when overly acti...

DNA strands often “wiggle” as part of genetic repair

Sometimes, the molecules that make up life exhibit strange behavior. For instance, in simple organisms such as yeast, when genetic material becomes damaged, the affected DNA strands increase their motion, waving about inside the cell like a sail unfurled. Over the years, scientists have seen more...

Study reveals the architecture of the molecular machine that copies DNA

DNA replication is essential to all life, yet many basic mechanisms in that process remain unknown to scientists. The structure of the replisome—a block of proteins responsible for unwinding the DNA helix and then creating duplicate helices for cell division—is one such mystery. Now, for the ...

Researchers examine how a face represents a whole person in the brain

The sight of a face offers the brain something special. More than a set of features, it conveys the emotions, intent, and identity of the whole individual. The same is not true for the body; cues such as posture convey some social information, but the image of a body does not substitute for a fac...

Discovery of genes involved in inner ear development hints at a way to restore hearing and balance

Loud noise, trauma, infections, plain old aging—many things can destroy hair cells, the delicate sensors of balance and sound within the inner ear. And once these sensors are gone, that’s it; the delicate hair cells don’t grow back in humans, leading to hearing loss and problems with balance. ...

Researchers explore how a cell’s protein-making factories are assembled

Ribosomes, the molecular factories that produce all the proteins a cell needs to grow and function, are themselves made up of many different proteins and four RNAs. And just as an assembly line must be built before it can manufacture cars, these tiny factories must be constructed before they can ...

Researchers identify potential new leukemia drug target

New treatment options are badly needed for acute myeloid leukemia, a relatively rare form of cancer. The malignancy begins in the bone marrow, and from there can spread rapidly to the bloodstream, depriving the body of the essential blood cells that carry oxygen and fight infections. Now, new wor...

Newly described ion channel structure reveals how excited neurons settle down

Within the brain, some neurons fire off hundreds of signals per second, and after ramping up for such a barrage, they need to relax and reset. A particular type of ion channel helps bring them down, ensuring these cells don’t get overstimulated—a state that potentially can lead to severe epilept...

Finches offer researchers a new tool to study Huntington’s disease

Many neurological disorders can rob someone of the ability to speak clearly, causing them to stutter, mispronounce words, and struggle to put together coherent sentences. However, the molecular and neurological dysfunctions that cause these symptoms aren’t well understood. Recent work at The Rock...

Researchers probe the physical forces involved in creating the mitotic spindle

Many millions of times per day, football-shaped structures called mitotic spindles form within the body’s cells as they prepare to divide. The process is routine but mysterious, as the micro-mechanics involved are not yet well understood. In research published October 1 in Developmental Cell, sci...

Study offers insight on how a new class of antidepressants works

A new class of drugs under development to treat depression has shown some success by targeting brain cells’ ability to respond to the chemical messenger glutamate. But the mechanism by which these experimental therapies work has remained unknown. The recent discovery, by a Rockefeller University-...

New findings help explain how molecules are speedily transported into and out of the cell's nucleus

A cell does everything it can to protect its nucleus, where precious genetic information is stored. That includes controlling the movement of molecules in and out using gateways called nuclear pore complexes (NPCs). Now, researchers at The Rockefeller University, Albert Einstein College of Medici...

For worms, positive thinking is the key to finding food

Caenorhabditis elegans, a tiny roundworm, spends much of its lifetime searching for soil bacteria to eat. This humble creature possesses 302 neurons, which may not seem like a lot compared to the billions of nerve cells that make up the human brain. Nonetheless, it uses sophisticated strategies t...

New findings shed light on fundamental process of DNA repair

Inside the trillions of cells that make up the human body, things are rarely silent. Molecules are constantly being made, moved, and modified — and during these processes, mistakes are sometimes made. Strands of DNA, for instance, can break for any number of reasons, such as exposure to UV radiat...

Research identifies a protein that helps determine the fate of RNA

After it is transcribed from DNA, RNA can go on to many fates. While the most familiar path may lead directly to the production of protein, RNA molecules themselves can also become capable of altering the expression of genes. New research helps explain how the destiny of an RNA sequence is achiev...

Promising class of new cancer drugs causes memory loss in mice

Cancer researchers are constantly in search of more-effective and less-toxic approaches to stopping the disease, and have recently launched clinical trials testing a new class of drugs called BET inhibitors. These therapies act on a group of proteins that help regulate the expression of many gene...

A newly discovered molecular feedback process may protect the brain against Alzheimer’s

It is a hallmark of Alzheimer’s disease: Toxic protein fragments known as amyloid-β clumped together between neurons in a person’s brain. Neurons themselves make amyloid-β, and for reasons that aren’t fully understood, its accumulation ultimately contributes to the memory loss, personality c...

In exploring a fly’s choice of a mate, researchers track the neural circuits that bridge sensory perception and behavioral action

If you’ve ever found a banana overtaken by a swarm of tiny flies, you were in fact witnessing an orgy of amorous Drosophila melanogaster. These trespassers engage in fervent courtship and mating atop ripe fruits, and the sex is anything but casual. In particular, male flies are very precise in ch...

New research helps explain why a deadly blood cancer often affects children with malaria

In equatorial Africa, a region of the globe known as the “lymphoma belt,” children are ten times more likely than in other parts of the world to develop Burkitt’s lymphoma, a highly aggressive blood cancer that can be fatal if left untreated. That area is also plagued by high rates of malaria,...

New research sheds light on the molecular origins of Parkinson’s disease

As Parkinson’s disease progresses in patients, a puzzling dichotomy plays out in their brains. One set of neurons degenerates, while a similar population nearby is spared the same degree of damage. Why the difference? An answer to this question could clear the way for preventions and treatments f...

Mutations linked to genetic disorders shed light on a crucial DNA repair pathway

Dividing cells are prone to errors, and so they must be prepared to summon sophisticated emergency systems to deal with potential damage. One type of division-derailing mishap can occur when assault by certain chemicals causes two strands of DNA to permanently connect when they shouldn’t, in what...

Fly brains filter out visual information caused by their own movements, like humans

Our brains are constantly barraged with sensory information, but have an amazing ability to filter out just what they need to understand what’s going on around us. For instance, if you stand perfectly still in a room, and that room rotates around you, it’s terrifying. But stand still in a room a...

Atomic view of cellular pump reveals how bacteria send out proteins

Bacteria have plenty of things to send out into world beyond their own boundaries: coordinating signals to other members of their species, poisons for their enemies, and devious instructions to manipulate host cells they have infected. Before any of this can occur, however, they must first get th...

Cell division speeds up as part of antibody selection, study shows

It’s a basic principle of immunology: When a germ invades, the body adapts to that particular target and destroys it. But much remains unknown about how the immune system refines its defensive proteins, called antibodies, to most effectively zero in on that invader. Experiments at The Rockefeller...

Mutations in a single gene underlie vulnerability to two unrelated types of infections

When a genetic error weakens a child’s immunity, otherwise nonthreatening microbes can sicken and sometimes kill. In work published July 9 in Science, researchers at The Rockefeller University and their colleagues identify one surprising case in which mutations in a single gene render children vu...

Discovery points to a new path toward a universal flu vaccine

Flu vaccines can be something of a shot in the dark. Not only must they be given yearly, there’s no guarantee the strains against which they protect will be the ones circulating once the season arrives. New research by Rockefeller University scientists and their colleagues suggests it may be poss...

Lifelong learning is made possible by recycling of histones, study says

Neurons are a limited commodity; each of us goes through life with essentially the same set we had at birth. But these cells, whose electrical signals drive our thoughts, perceptions, and actions, are anything but static. They change and adapt in response to experience throughout our lifetimes, a...

Sequential immunizations could be the key to HIV vaccine

The secret to preventing HIV infection lies within the human immune system, but the more-than-25-year search has so far failed to yield a vaccine capable of training the body to neutralize the ever-changing virus. New research from The Rockefeller University, and collaborating institutions, sugge...

Research reveals key interaction that opens the channel into the cell’s nucleus

Cells have devised many structures for transporting molecular cargo across their protective borders, but the nuclear pore complex, with its flower-like, eight-fold symmetry, stands out. Monstrously large by cellular standards, as well as versatile, this elaborate portal controls access to and exi...

Research shows how antibodies produce vaccine-like effect against tumors

The problem with traditional cancer treatments is that their effects don’t always last:  Stop the therapy and the disease may return. That’s why antibody therapy — which not only kills tumors, but also appears to train the body’s own defenses to recognize them — has such promise. New rese...

Fragments of tRNA suggest a novel mechanism for cancer progression

For years, scientists have been puzzled by the presence of short stretches of genetic material floating inside a variety of cells, ranging from bacteria to mammals, including humans. These fragments are pieces of the genetic instructions cells use to make proteins, but are too short a length to s...

Rockefeller scientists resolve long-standing debate over how many bacteria fight off invaders

Every inch of our body, inside and out, is oozing with bacteria. In fact, the human body carries 10 times the number of bacterial cells as human cells. Many are our friends, helping us digest food and fight off infections, for instance. But much about these abundant organisms, upon which our life...

Odd histone helps suppress jumping genes in stem cells, study says

A family of proteins known as histones provides support and structure to DNA, but for years, scientists have been puzzling over occasional outliers among these histones, which appear to exist for specific, but often mysterious reasons. Now, researchers have uncovered a new purpose for one such hi...

Research on the genetic roots of a blood disorder illustrates the challenges in parsing genetic data

Accumulating data, even genetic data, is easy. Understanding the meaning of those data can be more of a challenge. As genetic testing becomes increasingly popular, more and more patients and physicians are faced with tough questions: Does a particular genetic variation translate into a predisposi...

In first human study, new antibody therapy shows promise in suppressing HIV infection

In the first results to emerge from HIV patient trials of a new generation of so-called broadly neutralizing antibodies, Rockefeller University researchers have found the experimental therapy can dramatically reduce the amount of virus present in a patient’s blood. The work, reported this week in...

Under the microscope, strong-swimming swamp bacteria spontaneously organize into crystals

Insects form swarms, fish school, birds flock together. Likewise, one species of bacteria forms dynamic, living crystals, says new research from Rockefeller University. Biophysicists have revealed that fast-swimming, sulfur-eating microbes known as Thiovulum majus can organize themselves into a t...

Genetic mutation helps explain why, in rare cases, flu can kill

Nobody likes getting the flu, but for some people, fluids and rest aren’t enough. A small number of children who catch the influenza virus fall so ill they end up in the hospital — perhaps needing ventilators to breathe — even while their family and friends recover easily. New research by Roc...

To survive, a parasite mixes and matches its disguises, study suggests

Orchestrated costume changes make it possible for certain nasty microbes to outsmart the immune system, which would otherwise recognize them by the telltale proteins they wear. By taking the first detailed look at how one such parasite periodically assumes a new protein disguise during a long-ter...

Researchers master gene editing technique in mosquito that transmits deadly diseases

Traditionally, to understand how a gene functions, a scientist would breed an organism that lacks that gene — “knocking it out” — then ask how the organism has changed. Are its senses affected? Its behavior? Can it even survive? Thanks to the recent advance of gene editing technology, this ...

Chemical tag marks future microRNAs for processing, study shows

Just as two DNA strands naturally arrange themselves into a helix, DNA’s molecular cousin RNA can form hairpin-like loops. But unlike DNA, which has a single job, RNA can play many parts — including acting as a precursor for small molecules that block the activity of genes. These small RNA molec...

Changes in a blood-based molecular pathway identified in Alzheimer’s disease

By the time most people receive a diagnosis of Alzheimer’s disease — based on clinical signs of mental decline — their brains have already suffered a decade or more of damage. But although the mechanisms that spur the destruction of neurons in Alzheimer’s disease are not yet fully understood...

Scientists pinpoint molecule that controls stem cell plasticity by boosting gene expression

Stem cells can have a strong sense of identity. Taken out of their home in the hair follicle, for example, and grown in culture, these cells remain true to themselves. After waiting in limbo, these cultured cells become capable of regenerating follicles and other skin structures once transplanted...

New antibody therapy dramatically improves psoriasis symptoms in clinical trial

Many patients suffering from psoriasis showed significant recovery after just a single dose of an experimental treatment with a human antibody that blocks an immune signaling protein crucial to the disease, researchers report. By the end of the trial, conducted at Rockefeller University and seven...

Analysis of worm neurons suggests how a single stimulus can trigger different responses

Even worms have free will. If offered a delicious smell, for example, a roundworm will usually stop its wandering to investigate the source, but sometimes it won’t. Just as with humans, the same stimulus does not always provoke the same response, even from the same individual. New research at Roc...

Study details microRNA’s role as a double agent during Hep C infection

In the battle between a cell and a virus, either side may resort to subterfuge. Molecular messages, which control the cellular machinery both sides need, are vulnerable to interception or forgery. New research at Rockefeller University has revealed the unique twist on just such a strategy deploye...

Growth signal can influence cancer cells’ vulnerability to drugs, study suggests

In theory, a tumor is an army of clones, made up of many copies of the original cancerous cell. But tumor cells don’t always act like duplicates, and their unpredictable behavior can create problems for treatment. For while some cells within a tumor succumb to anti-cancer drugs, others may surviv...

Research captures transient details of HIV genome packaging

Once HIV-1 has hijacked a host cell to make copies of its own RNA genome and viral proteins, it must assemble these components into new virus particles. The orchestration of this intricate assembly process falls to a viral protein known as Gag. For one thing, Gag must be able to discern viral RNA...

Virus-cutting enzyme helps bacteria remember a threat

Bacteria may not have brains, but they do have memories, at least when it comes to viruses that attack them. Many bacteria have a molecular immune system which allows these microbes to capture and retain pieces of viral DNA that they have encountered in the past, in order to recognize and destroy...

Key to blocking influenza virus may lie in a cell’s own machinery

Viruses are masters of outsourcing, entrusting their fundamental function – reproduction – to the host cells they infect. But it turns out this highly economical approach also creates vulnerability. Researchers at Rockefeller University and their collaborators have found an unexpected way the...

Drug-resistant bacteria lurk in subway stations, high school students discover

Forget the five-million plus commuters and untold number of rats – many of the living things crowded into the New York City subway system are too small to see. An interest in the more menacing among these microbes led high school student Anya Dunaif, a participant in Rockefeller’s Summer Science...

Latent HIV may lurk in ‘quiet’ immune cells, research suggests

Drugs for HIV have become adept at suppressing infection, but they still can’t eliminate it. That’s because the medication in these pills doesn’t touch the virus’ hidden reserves, which lie dormant within infected white blood cells. Unlock the secrets of this pool of latent virus, scientists...

Research implicates metabolic process of the liver in the spread of colorectal cancer

Colorectal cancer is a cancer on the move: about 50 percent of patients with the disease see their cancer spread, typically to the liver. By identifying genes that become activated in cancer cells that successfully travel — metastasize — to the liver, researchers at Rockefeller have implicated...