Publications search

Found 37684 matches. Displaying 4671-4680
Historically, many of the classical organic fluorescent dyes were developed as laser dyes and characterized and optimized in organic solvents. Since then, fluorescence has, however, found a vast range of applications in the life sciences in which the fluorophores are usually surrounded by water and not by organic solvents. The omnipresence of water in biomolecular fluorescence spectroscopy and imaging leads to some unwanted but nonetheless unavoidable consequences on the photophysical properties of the dyes, which may impact the quality and complicate quantitative interpretation of the experiments. This paper discusses and illustrates with examples two such water-induced phenomena, namely chromophore aggregation in water and fluorescence quenching by water, as well as some ways to overcome them.
Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K, Taubenberger JK, Ahmed R, Ravetch JV
Show All Authors

IgG antibodies to dengue enhanced for Fc gamma RIIIA binding determine disease severity

SCIENCE 2017 JAN 27; 355(6323):395-398
Dengue virus (DENV) infection in the presence of reactive, non-neutralizing immunoglobulin G (IgG) (RNNIg) is the greatest risk factor for dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Progression to DHF/DSS is attributed to antibody-dependent enhancement (ADE); however, because only a fraction of infections occurring in the presence of RNNIg advance to DHF/DSS, the presence of RNNIg alone cannot account for disease severity. We discovered that DHF/DSS patients respond to infection by producing IgGs with enhanced affinity for the activating Fc receptor Fc gamma RIIIA due to afucosylated Fc glycans and IgG1 subclass. RNNIg enriched for afucosylated IgG1 triggered platelet reduction in vivo and was a significant risk factor for thrombocytopenia. Thus, therapeutics and vaccines restricting production of afucosylated, IgG1 RNNIg during infection may prevent ADE of DENV disease.
Erdel F, Kratz K, Willcox S, Griffith JD, Greene EC, de Lange T
Show All Authors

Telomere Recognition and Assembly Mechanism of Mammalian Shelterin

CELL REPORTS 2017 JAN 3; 18(1):41-53
Shelterin is a six-subunit protein complex that plays crucial roles in telomere length regulation, protection, and maintenance. Although several shelterin subunits have been studied in vitro, the biochemical properties of the fully assembled shelterin complex are not well defined. Here, we characterize shelterin using ensemble biochemical methods, electron microscopy, and single-molecule imaging to determine how shelterin recognizes and assembles onto telomeric repeats. We show that shelterin complexes can exist in solution and primarily locate telomeric DNA through a three-dimensional diffusive search. Shelterin can diffuse along non-telomeric DNA but is impeded by nucleosomes, arguing against extensive one-dimensional diffusion as a viable assembly mechanism. Our work supports a model in which individual shelterin complexes rapidly bind to telomeric repeats as independent functional units, which do not alter the DNA-binding mode of neighboring complexes but, rather, occupy telomeric DNA in a "beads on a string'' configuration.
Xu M, Kolding J, Cohen JE
Show All Authors

Taylor's power law and fixed-precision sampling: application to abundance of fish sampled by gillnets in an African lake

CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES 2017 JAN; 74(1):87-100
Taylor's power law (TPL) describes the variance of population abundance as a power-law function of the mean abundance for a single or a group of species. Using consistently sampled long-term (1958-2001) multimesh capture data of Lake Kariba in Africa, we showed that TPL robustly described the relationship between the temporal mean and the temporal variance of the captured fish assemblage abundance (regardless of species), separately when abundance was measured by numbers of individuals and by aggregate weight. The strong correlation between the mean of abundance and the variance of abundance was not altered after adding other abiotic or biotic variables into the TPL model. We analytically connected the parameters of TPL when abundance was measured separately by the aggregate weight and by the aggregate number, using a weight-number scaling relationship. We utilized TPL to find the number of samples required for fixed-precision sampling and compared the number of samples when sampling was performed with a single gillnet mesh size and with multiple mesh sizes. These results facilitate optimizing the sampling design to estimate fish assemblage abundance with specified precision, as needed in stock management and conservation.
Lee CH, MacKinnon R
Show All Authors

Structures of the Human HCN1 Hyperpolarization-Activated Channel

CELL 2017 JAN 12; 168(1-2):111-120.e11
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the control of rhythmic activity in cardiac and neuronal pacemaker cells. In HCN, the polarity of voltage dependence is uniquely reversed. Intracellular cyclic adenosine monophosphate (cAMP) levels tune the voltage response, enabling sympathetic nerve stimulation to increase the heart rate. We present cryo-electron microscopy structures of the human HCN channel in the absence and presence of cAMP at 3.5 angstrom resolution. HCN channels contain a K+ channel selectivity filter-forming sequence from which the amino acids create a unique structure that explains Na+ and K+ permeability. The voltage sensor adopts a depolarized conformation, and the pore is closed. An S4 helix of unprecedented length extends into the cytoplasm, contacts the C-linker, and twists the inner helical gate shut. cAMP binding rotates cytoplasmic domains to favor opening of the inner helical gate. These structures advance understanding of ion selectivity, reversed polarity gating, and cAMP regulation in HCN channels.
Chang LD, Lohaugen GC, Andres T, Jiang CS, Douet V, Tanizaki N, Walker C, Castillo D, Lim A, Skranes J, Otoshi C, Miller EN, Ernst TM
Show All Authors

Adaptive working memory training improved brain function in human immunodeficiency virus-seropositive patients

ANNALS OF NEUROLOGY 2017 JAN; 81(1):17-34
ObjectiveWe aimed to evaluate the effectiveness of an adaptive working memory (WM) training (WMT) program, the corresponding neural correlates, and LMX1A-rs4657412 polymorphism on the adaptive WMT, in human immunodeficiency virus (HIV) participants compared to seronegative (SN) controls. MethodsA total of 201 of 206 qualified participants completed baseline assessments before randomization to 25 sessions of adaptive WMT or nonadaptive WMT. A total of 74 of 76 (34 HIV, 42 SN) completed adaptive WMT and all 40 completed nonadaptive WMT (20 HIV, 20 SN) and were assessed after 1 month, and 55 adaptive WMT participants were also assessed after 6 months. Nontrained near-transfer WM tests (Digit-Span, Spatial-Span), self-reported executive functioning, and functional magnetic resonance images during 1-back and 2-back tasks were performed at baseline and each follow-up visit, and LMX1A-rs4657412 was genotyped in all participants. ResultsAlthough HIV participants had slightly lower cognitive performance and start index than SN at baseline, both groups improved on improvement index (>30%; false discovery rate [FDR] corrected p<0.0008) and nontrained WM tests after adaptive WMT (FDR corrected, p0.001), but not after nonadaptive WMT (training by training type corrected, p=0.01 to p=0.05) 1 month later. HIV participants (especially LMX1A-G carriers) also had poorer self-reported executive functioning than SN, but both groups reported improvements after adaptive WMT (Global: training FDR corrected, p=0.004), and only HIV participants improved after nonadaptive WMT. HIV participants also had greater frontal activation than SN at baseline, but brain activation decreased in both groups at 1 and 6 months after adaptive WMT (FDR corrected, p<0.0001), with normalization of brain activation in HIV participants, especially the LMX1A-AA carriers (LMX1A genotype by HIV status, cluster-corrected-p<0.0001). InterpretationAdaptive WMT, but not nonadaptive WMT, improved WM performance in both SN and HIV participants, and the accompanied decreased or normalized brain activation suggest improved neural efficiency, especially in HIV-LMX1A-AA carriers who might have greater dopaminergic reserve. These findings suggest that adaptive WMT may be an effective adjunctive therapy for WM deficits in HIV participants. ANN NEUROL 2017;81:17-34
Zheng B, Wang JD, Tang LL, Tan C, Zhao Z, Xiao Y, Ge RS, Zhu DY
Show All Authors

Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro

INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES 2017; 13(1):110-121
Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and a-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells.
Satoh S, Kappen HJ, Saeki M
Show All Authors

An Iterative Method for Nonlinear Stochastic Optimal Control Based on Path Integrals

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2017 JAN; 62(1):262-276
This paper proposes a new iterative solution method for nonlinear stochastic optimal control problems based on path integral analysis. First, we provide an iteration law for solving a stochastic Hamilton-Jacobi-Bellman (SHJB) equation associated to this problem, which is a nonlinear partial differential equation (PDE) of second order. Each iteration procedure of the proposed method is represented by a Cauchy problem for a linear parabolic PDE, and its explicit solution is given by the Feynman-Kac formula. Second, we derive a suboptimal feedback controller at each iteration by using the path integral analysis. Third, the convergence property of the proposed method is investigated. Here, some conditions are provided so that the sequence of solutions for the proposed iteration converges, and the SHJB equation is satisfied. Finally, numerical simulations demonstrate the effectiveness of the proposed method.
Rakonjac J, Russel M, Khanum S, Brooke SJ, Rajic M
Show All Authors

Filamentous Phage: Structure and Biology

RECOMBINANT ANTIBODIES FOR INFECTIOUS DISEASES 2017; 1053(?):1-20
Ff filamentous phage (fd, M13 and f1) of Escherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.
Hite RK, MacKinnon R
Show All Authors

Structural Titration of Slo2.2, a Na+-Dependent K+ Channel

CELL 2017 JAN 26; 168(3):390-399.e11
The stable structural conformations that occur along the complete reaction coordinate for ion channel opening have never been observed. In this study, we describe the equilibrium ensemble of structures of Slo2.2, a neuronal Na+-activated K+ channel, as a function of the Na+ concentration. We find that Slo2.2 exists in multiple closed conformations whose relative occupancies are independent of Na+ concentration. An open conformation emerges from an ensemble of closed conformations in a highly Na+-dependent manner, without evidence of Na+-dependent intermediates. In other words, channel opening is a highly concerted, switch-like process. The midpoint of the structural titration matches that of the functional titration. A maximum open conformation probability approaching 1.0 and maximum functional open probability approaching 0.7 imply that, within the class of open channels, there is a subclass that is not permeable to ions.