Publications search

Found 37684 matches. Displaying 4661-4670
Kim AJ, Fenk LM, Lyu C, Maimon G
Show All Authors

Quantitative Predictions Orchestrate Visual Signaling in Drosophila

CELL 2017 JAN 12; 168(1-2):280-294.e12
Vision influences behavior, but ongoing behavior also modulates vision in animals ranging from insects to primates. The function and biophysical mechanisms of most such modulations remain unresolved. Here, we combine behavioral genetics, electrophysiology, and high-speed videography to advance a function for behavioral modulations of visual processing in Drosophila. We argue that a set of motion-sensitive visual neurons regulate gaze-stabilizing head movements. We describe how, during flight turns, Drosophila perform a set of head movements that require silencing their gaze-stability reflexes along the primary rotation axis of the turn. Consistent with this behavioral requirement, we find pervasive motor-related inputs to the visual neurons, which quantitatively silence their predicted visual responses to rotations around the relevant axis while preserving sensitivity around other axes. This work proposes a function for a behavioral modulation of visual processing and illustrates how the brain can remove one sensory signal from a circuit carrying multiple related signals.
Kushnir VA, Barad DH, Albertini DF, Darmon SK, Gleicher N
Show All Authors

Systematic review of worldwide trends in assisted reproductive technology 2004-2013

Reproductive Biology and Endocrinology 2017 JAN 10; 15(?):? Article 6
Background: Assisted Reproductive Technology (ART) has undergone considerable changes over the last decade, with consequences on ART outcomes in different regions of the world being unknown. Methods: We conducted a systematic review of published national and regional ART registry data to assess how changes in clinical practice between 2004 and 2013 have impacted outcomes in Australia and New Zealand, Canada, Continental Europe, the United Kingdom (U.K.), Japan, Latin America, and the United States (U.S.). The data reflect 7,079,145 total ART cycles utilizing both fresh and previously cryopreserved embryos from autologous oocytes that resulted in 1,454,724 live births. This review focused on the following measures: ART cycle volume, use of cryopreserved embryos, single embryo transfer (SET), live birth rates in fresh and frozen-thawed cycles, and perinatal outcomes in recent years. Results: SETs and utilization of frozen-thawed embryos increased worldwide over the study period. In 2012 SET utilization in all ART cycles was highest in Japan and Australia/New Zealand (82.6% and 76.3% respectively) and lowest in Latin America (16.0%). While gradual improvements in live birth rates were observed in most regions, some demonstrated declines. By 2012-2013, fresh cycle live birth rates were highest in the U.S. (29%) and lowest in Japan (5%). In Japan, the observed decline in fresh cycle live birth rate coincided with transition to minimal stimulation protocols, transfer of frozen-thawed rather than fresh embryos, and implementation of an SET policy. Similarly, implementation of an SET policy in parts of Canada was followed by a decline in fresh cycle live birth rate. Increasing live birth rates in frozen-thawed embryo cycles, seen all over the world, partially compensated for declines in fresh ART cycles. During 2012-2013 Australia/New Zealand and Japan reported the lowest multiple delivery rates of 5.6 and 4% respectively while the US had the highest of 27%. In recent years, preterm delivery rates in all regions ranged between 9.0 to 16.6% for singletons, 53.9 to 67.3% for twins, and 91.4 to 100% for triplets and higher order multiples. Inconsistencies in the way perinatal outcome data are presented by various registries, made comparison between regions difficult. Conclusions: ART practices are characterized by outcome differences between regions. International consensus on the definition of ART success, which accounts for perinatal outcomes, may help to standardize worldwide ART practice and improve outcomes.
McEwen CA, McEwen BS
Show All Authors

Social Structure, Adversity, Toxic Stress, and Intergenerational Poverty: An Early Childhood Model

ANNUAL REVIEW OF SOCIOLOGY, VOL 43 2017; 43(?):445-472
Why are children of poor parents more likely to be poor as adults than other children? Early-childhood adversities resulting from social structures and relationships impact children's bodily systems and brain development through recurrent stress. These socially patterned biological processes influence social reproduction. Social support and interventions can prevent or compensate for the early biological effects of toxic social environments. This article integrates sociological, neuroscience, epigenetic, and psychological evidence to build a model of early-childhood developmental mechanisms contributing to intergenerational poverty. This model captures ways in which social structures interact with biological characteristics and systems to shape life trajectories.
Barson JR, Leibowitz SF
Show All Authors

Orexin/Hypocretin System: Role in Food and Drug Overconsumption

ROLE OF NEUROPEPTIDES IN ADDICTION AND DISORDERS OF EXCESSIVE CONSUMPTION 2017; 136(?):199-237
The neuropeptide orexin/hypocretin (OX), while largely transcribed within the hypothalamus, is released throughout the brain to affect complex behaviors. Primarily through the hypothalamus itself, OX homeostatically regulates adaptive behaviors needed for survival, including food intake, sleep-wake regulation, mating, and maternal behavior. However, through extrahypothalamic limbic brain regions, OX promotes seeking and intake of rewarding substances of abuse, like palatable food, alcohol, nicotine, and cocaine. This neuropeptide, in turn, is stimulated by the intake of or early life exposure to these substances, forming a nonhomeostatic, positive feedback loop. The specific OX receptor involved in these behaviors, whether adaptive behavior or substance seeking and intake, is dependent on the particular brain region that contributes to them. Thus, we propose that, while the primary function of OX is to maintain arousal for the performance of adaptive behaviors, this neuropeptide system is readily co-opted by rewarding substances that involve positive feedback, ultimately promoting their abuse.
Brunner PM, Silverberg JI, Guttman-Yassky E, Paller AS, Kabashima K, Amagai M, Luger TA, Deleuran M, Werfel T, Eyerich K, Stingl G
Show All Authors

Increasing Comorbidities Suggest that Atopic Dermatitis Is a Systemic Disorder

JOURNAL OF INVESTIGATIVE DERMATOLOGY 2017 JAN; 137(1):18-25
Atopic dermatitis comorbidities extend well beyond the march to allergic conditions (food allergy, asthma, allergic rhinitis, allergic conjunctivitis, and eosinophilic esophagitis), suggesting both cutaneous and systemic immune activation. In reviewing atopic dermatitis comorbidities, Councilors of the International Eczema Council found a strong pattern of immune activation in peripheral blood and the propensity to both skin and systemic infections. Associations with cardiovascular, neuropsychiatric, and malignant diseases were increasingly reported, but confirmation of their link with atopic dermatitis requires longitudinal studies. Given the possibility of atopic dermatitis-related systemic immune activation, future investigations of new interventions should concurrently examine the impact on these comorbidities.
Marraffini LA
Show All Authors

Sensing danger

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2017 JAN 3; 114(1):15-16
Chaker-Margot M, Barandun J, Hunziker M, Klinge S
Show All Authors

Architecture of the yeast small subunit processome

SCIENCE 2017 JAN 13; 355(6321):147-155
The small subunit (SSU) processome, a large ribonucleoprotein particle, organizes the assembly of the eukaryotic small ribosomal subunit by coordinating the folding, cleavage, and modification of nascent pre-ribosomal RNA (rRNA). Here, we present the cryo-electron microscopy structure of the yeast SSU processome at 5.1-angstrom resolution. The structure reveals how large ribosome biogenesis complexes assist the 5' external transcribed spacer and U3 small nucleolar RNA in providing an intertwined RNA-protein assembly platform for the separate maturation of 18S rRNA domains. The strategic placement of a molecular motor at the center of the particle further suggests a mechanism for mediating conformational changes within this giant particle. This study provides a structural framework for a mechanistic understanding of eukaryotic ribosome assembly in the model organism Saccharomyces cerevisiae.
Trible W, Kronauer DJC
Show All Authors

Caste development and evolution in ants: it's all about size

JOURNAL OF EXPERIMENTAL BIOLOGY 2017 JAN; 220(1):53-62
Female ants display a wide variety of morphological castes, including workers, soldiers, ergatoid (worker-like) queens and queens. Alternative caste development within a species arises from a variable array of genetic and environmental factors. Castes themselves are also variable across species and have been repeatedly gained and lost throughout the evolutionary history of ants. Here, we propose a simple theory of caste development and evolution. We propose that female morphology varies as a function of size, such that larger individuals possess more queen-like traits. Thus, the diverse mechanisms that influence caste development are simply mechanisms that affect size in ants. Each caste-associated trait has a unique relationship with size, producing a phenotypic space that permits some combinations of worker- and queen-like traits, but not others. We propose that castes are gained and lost by modifying the regions of this phenotypic space that are realized within a species. These modifications can result from changing the size-frequency distribution of individuals within a species, or by changing the association of tissue growth and size. We hope this synthesis will help unify the literature on caste in ants, and facilitate the discovery of molecular mechanisms underlying caste development and evolution.
Nishi A, Matamales M, Musante V, Valjent E, Kuroiwa M, Kitahara Y, Rebholz H, Greengard P, Girault JA, Nairn AC
Show All Authors

Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution

JOURNAL OF BIOLOGICAL CHEMISTRY 2017 JAN 27; 292(4):1462-1476
The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo. Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels.
Gerwin PM, Arbona RJR, Riedel ER, Lepherd ML, Henderson KS, Lipman NS
Show All Authors

Evaluation of Traditional and Contemporary Methods for Detecting Syphacia obvelata and Aspiculuris tetraptera in Laboratory Mice

JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2017 JAN; 56(1):32-41
There is no consensus regarding the best practice for detecting murine pinworm infections. Initially, we evaluated 7 fecal concentration methods by using feces containing Aspiculuris tetraptera (AT) eggs (n = 20 samples per method). Sodium nitrate flotation, sodium nitrate centrifugation, Sheather sugar centrifugation, and zinc sulfate centrifugation detected eggs in 100% of samples; zinc sulfate flotation and water sedimentation detected eggs in 90%. All had better detection rates than Sheather sugar flotation (50%). To determine optimal detection methods, Swiss Webster mice were exposed to Syphacia obvelata (SO; n = 60) or AT (n = 60). We compared the following methods at days 0, 30, and 90, beginning 21 or 28 d after SO and AT exposure, respectively: fecal concentration (AT only), anal tape test (SO only), direct examination of intestinal contents (cecum and colon), Swiss roll histology (cecum and colon), and PCR analysis (pooled fur swab and feces). Detection rates for SO-exposed mice were: PCR analysis, 45%; Swiss roll histology, 30%; intestinal content exam, 27%; and tape test, 27%. The SO detection rate for PCR analysis was significantly greater than that for the tape test. Detection rates for AT-exposed mice were: intestinal content exam, 53%; PCR analysis, 33%; fecal flotation, 22%; and Swiss roll histology, 17%. The AT detection rate of PCR analysis combined with intestinal content examination was greater than for PCR analysis only and the AT detection rate of intestinal content examination was greater than for Swiss roll histology. Combining PCR analysis with intestinal content examination detected 100% of infected animals. No single test detected all positive animals. We recommend combining PCR analysis with intestinal content examination for optimal pinworm detection.