Publications search

Found 37684 matches. Displaying 4551-4560
Lau T, Bigio B, Zelli D, McEwen BS, Nasca C
Show All Authors

Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant

MOLECULAR PSYCHIATRY 2017 FEB; 22(2):227-234
The adult brain is capable of adapting to internal and external stressors by undergoing structural plasticity, and failure to be resilient and preserve normal structure and function is likely to contribute to depression and anxiety disorders. Although the hippocampus has provided the gateway for understanding stress effects on the brain, less is known about the amygdala, a key brain area involved in the neural circuitry of fear and anxiety. Here, in mice more vulnerable to stressors, we demonstrate structural plasticity within the medial and basolateral regions of the amygdala in response to prolonged 21-day chronic restraint stress (CRS). Three days before the end of CRS, treatment with the putative, rapidly acting antidepressant, acetyl-L-carnitine (LAC) in the drinking water opposed the direction of these changes. Behaviorally, the LAC treatment during the last part of CRS enhanced resilience, opposing the effects of CRS, as shown by an increased social interaction and reduced passive behavior in a forced swim test. Furthermore, CRS mice treated with LAC show resilience of the CRS-induced structural remodeling of medial amygdala (MeA) stellate neurons. Within the basolateral amygdala (BLA), LAC did not reduce, but slightly enhanced, the CRS-increased length and number of intersections of pyramidal neurons. No structural changes were observed in MeA bipolar neurons, BLA stellate neurons or in lateral amygdala stellate neurons. Our findings identify MeA stellate neurons as an important component in the responses to stress and LAC action and show that LAC can promote structural plasticity of the MeA. This may be useful as a model for increasing resilience to stressors in at-risk populations.
Jang H, Levy S, Flavell SW, Mende F, Latham R, Zimmer M, Bargmann CI
Show All Authors

Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2017 FEB 14; 114(7):E1263-E1272
A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans. The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.
Schaafsma SM, Gagnidze K, Reyes A, Norstedt N, Mansson K, Francis K, Pfaff DW
Show All Authors

Sex-specific gene-environment interactions underlying ASD-like behaviors

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2017 FEB 7; 114(6):1383-1388
The male bias in the incidence of autism spectrum disorders (ASDs) is one of the most notable characteristics of this group of neurodevelopmental disorders. The etiology of this sex bias is far from known, but pivotal for understanding the etiology of ASDs in general. Here we investigate whether a "three-hit" (genetic load x environmental factor x sex) theory of autism may help explain the male predominance. We found that LPS-induced maternal immune activation caused male-specific deficits in certain social responses in the contactin-associated protein-like 2 (Cntnap2) mouse model for ASD. The three " hits" had cumulative effects on ultrasonic vocalizations at postnatal day 3. Hits synergistically affected social recognition in adulthood: only mice exposed to all three hits showed deficits in this aspect of social behavior. In brains of the same mice we found a significant three-way interaction on corticotropin-releasing hormone receptor-1 (Crhr1) gene expression, in the left hippocampus specifically, which co-occurred with epigenetic alterations in histone H3 N-terminal lysine 4 trimethylation (H3K4me3) over the Crhr1 promoter. Although it is highly likely that multiple (synergistic) interactions may be at work, change in the expression of genes in the hypothalamic-pituitary-adrenal/stress system (e. g., Crhr1) is one of them. The data provide proof-of-principle that genetic and environmental factors interact to cause sex-specific effects that may help explain the male bias in ASD incidence.
Barandun J, Damberger FF, Delley CL, Laederach J, Allain FHT, Weber-Ban E
Show All Authors

Prokaryotic ubiquitin-like protein remains intrinsically disordered when covalently attached to proteasomal target proteins

BMC STRUCTURAL BIOLOGY 2017 FEB 1; 17(?):? Article 1
Background: The post-translational modification pathway referred to as pupylation marks proteins for proteasomal degradation in Mycobacterium tuberculosis and other actinobacteria by covalently attaching the small protein Pup (prokaryotic ubiquitin-like protein) to target lysine residues. In contrast to the functionally analogous eukaryotic ubiquitin, Pup is intrinsically disordered in its free form. Its unfolded state allows Pup to adopt different structures upon interaction with different binding partners like the Pup ligase PafA and the proteasomal ATPase Mpa. While the disordered behavior of free Pup has been well characterized, it remained unknown whether Pup adopts a distinct structure when attached to a substrate. Results: Using a combination of NMR experiments and biochemical analysis we demonstrate that Pup remains unstructured when ligated to two well-established pupylation substrates targeted for proteasomal degradation in Mycobacterium tuberculosis, malonyl transacylase (FabD) and ketopantoyl hydroxylmethyltransferase (PanB). Isotopically labeled Pup was linked to FabD and PanB by in vitro pupylation to generate homogeneously pupylated substrates suitable for NMR analysis. The single target lysine of PanB was identified by a combination of mass spectroscopy and mutational analysis. Chemical shift comparison between Pup in its free form and ligated to substrate reveals intrinsic disorder of Pup in the conjugate. Conclusion: When linked to the proteasomal substrates FabD and PanB, Pup is unstructured and retains the ability to interact with its different binding partners. This suggests that it is not the conformation of Pup attached to these two substrates which determines their delivery to the proteasome, but the availability of the degradation complex and the depupylase.
Hong SG, Zhou WJ, Fang B, Lu WY, Loro E, Damle M, Ding GL, Jager J, Zhang SS, Zhang YX, Feng D, Chug QW, Dill BD, Molina H, Khurana TS, Rabinowitz JD, Lazar MA, Sun Z
Show All Authors

Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion

NATURE MEDICINE 2017 FEB; 23(2):223-234
Type 2 diabetes and insulin resistance are associated with reduced glucose utilization in the muscle and poor exercise performance. Here we find that depletion of the epigenome modifier histone deacetylase 3 (HDAC3) specifically in skeletal muscle causes severe systemic insulin resistance in mice but markedly enhances endurance and resistance to muscle fatigue, despite reducing muscle force. This seemingly paradoxical phenotype is due to lower glucose utilization and greater lipid oxidation in HDAC3-depleted muscles, a fuel switch caused by the activation of anaplerotic reactions driven by AMP deaminase 3 (Ampd3) and catabolism of branched-chain amino acids. These findings highlight the pivotal role of amino acid catabolism in muscle fatigue and type 2 diabetes pathogenesis. Further, as genome occupancy of HDAC3 in skeletal muscle is controlled by the circadian clock, these results delineate an epigenomic regulatory mechanism through which the circadian clock governs skeletal muscle bioenergetics. These findings suggest that physical exercise at certain times of the day or pharmacological targeting of HDAC3 could potentially be harnessed to alter systemic fuel metabolism and exercise performance.
Sabari BR, Zhang D, Allis CD, Zhao YM
Show All Authors

Metabolic regulation of gene expression through histone acylations

NATURE REVIEWS MOLECULAR CELL BIOLOGY 2017 FEB; 18(2):90-101
Eight types of short-chain Lys acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and beta-hydroxybutyrylation. Emerging evidence suggests that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this Review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, the acylation 'reader' proteins that mediate the effects of different acylations and their physiological functions, which include signal-dependent gene activation, spermatogenesis, tissue injury and metabolic stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by the metabolism of the different acyl-CoA forms, which in turn modulates the regulation of gene expression.
Giunta S, Funabiki H
Show All Authors

Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2017 FEB 21; 114(8):1928-1933
Centromeres are highly specialized chromatin domains that enable chromosome segregation and orchestrate faithful cell division. Human centromeres are composed of tandem arrays of a-satellite DNA, which spans up to several megabases. Little is known about the mechanisms that maintain integrity of the long arrays of a-satellite DNA repeats. Here, we monitored centromeric repeat stability in human cells using chromosome-orientation fluorescent in situ hybridization (CO-FISH). This assay detected aberrant centromeric CO-FISH patterns consistent with sister chromatid exchange at the frequency of 5% in primary tissue culture cells, whereas higher levels were seen in several cancer cell lines and during replicative senescence. To understand the mechanism(s) that maintains centromere integrity, we examined the contribution of the centromere-specific histone variant CENP-A and members of the constitutive centromere-associated network (CCAN), CENP-C, CENP-T, and CENP-W. Depletion of CENP-A and CCAN proteins led to an increase in centromere aberrations, whereas enhancing chromosome missegregation by alternative methods did not, suggesting that CENP-A and CCAN proteins help maintain centromere integrity independently of their role in chromosome segregation. Furthermore, superresolution imaging of centromeric CO-FISH using structured illumination microscopy implied that CENP-A protects a-satellite repeats from extensive rearrangements. Our study points toward the presence of a centromere-specificmechanism that actively maintains a-satellite repeat integrity during human cell proliferation.
Vila-Farres X, Chu J, Inoyama D, Ternei MA, Lemetre C, Cohen LJ, Cho W, Reddy BVB, Zebroski HA, Freundlich JS, Perlin DS, Brady SF
Show All Authors

Antimicrobials Inspired by Nonribosomal Peptide Synthetase Gene Clusters

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2017 FEB 1; 139(4):1404-1407
Bacterial culture broth extracts have been the starting point for the development of numerous therapeutics. However, only a small fraction of bacterial biosynthetic diversity is accessible using this strategy. Here, we apply a discovery approach that bypasses the culturing step entirely by bioinformatically predicting small molecule structures from the primary sequences of the biosynthetic gene clusters. These structures are then chemically synthesized to give synthetic-bioinformatic natural products (syn-BNPs). Using this approach, we screened synBNPs inspired by nonribosomal peptide synthetases against microbial pathogens, and discovered an antibiotic for which no resistance could be identified and an antifungal agent with activity against diverse fungal pathogens.
Lu C, Allis CD
Show All Authors

SWI/SNF complex in cancer

NATURE GENETICS 2017 FEB; 49(2):178-179
Four studies in this issue report new mechanisms underlying the function of the chromatin remodeling SWI/SNF complex in controlling gene expression and suppressing tumor development, providing valuable insights into the treatment of cancers harboring mutations in genes encoding SWI/SNF complex subunits.
Zhang MZM, Hang HC
Show All Authors

Protein S-palmitoylation in cellular differentiation

BIOCHEMICAL SOCIETY TRANSACTIONS 2017 FEB 8; 45(1):275-285
Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein-protein and membrane-protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes.