Publications search

Found 37684 matches. Displaying 5981-5990
Hegele RA
Show All Authors

Editorial introduction

CURRENT OPINION IN LIPIDOLOGY 2015 APR; 26(2):V-V
Kracker S, Di Virgilio M, Schwartzentruber J, Cuenin C, Forveille M, Deau MC, McBride KM, Majewski J, Gazumyan A, Seneviratne S, Grimbacher B, Kutukculer N, Herceg Z, Cavazzana M, Jabado N, Nussenzweig MC, Fischer A, Durandy A
Show All Authors

An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex

JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY 2015 APR; 135(4):998-1007
Background: Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. Objective: This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Methods: Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. Results: We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of gamma-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sa and Em regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. Conclusion: INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis.
Chaves LAP, Gadsby DC
Show All Authors

Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels

JOURNAL OF GENERAL PHYSIOLOGY 2015 APR; 145(4):261-283
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding-induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP-ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents-MTS-glucose, MTS-biotin, and MTS-rhodamine-demonstrates that, at the noncatalytic composite site, this separation must exceed 8 angstrom.
Silva-Sanchez A, Meza-Perez S, Flores-Langarica A, Donis-Maturano L, Estrada-Garcia I, Calderon-Amador J, Hernandez-Pando R, Idoyaga J, Steinman RM, Flores-Romo L
Show All Authors

ESAT-6 Targeting to DEC205+Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis

PLOS ONE 2015 APR 27; 10(4):?
Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (alpha-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205(+) APCs and to assess its in vivo effects on protection associated responses (IFN-gamma production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with alpha-DEC-ESAT alone induced ESAT-6-specific IFN-gamma producing CD4(+) T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-gamma(+) production by specific T cells in the lungs, compared to scarce IFN-gamma production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, alpha-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205(+) APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-gamma production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.
Burnaevskiy N, Peng T, Reddick LE, Hang HC, Alto NM
Show All Authors

Myristoylome Profiling Reveals a Concerted Mechanism of ARF GTPase Deacylation by the Bacterial Protease IpaJ

MOLECULAR CELL 2015 APR 2; 58(1):110-122
N-myristoylation is an essential fatty acid modification that governs the localization and activity of cell signaling enzymes, architectural proteins, and immune regulatory factors. Despite its importance in health and disease, there are currently no methods for reversing protein myristoylation in vivo. Recently, the Shigella flexneri protease IpaJ was found to cleave myristoylated glycine of eukaryotic proteins, yet the discriminatory mechanisms of substrate selection required for targeted demyristoylation have not yet been evaluated. Here, we performed global myristoylome profiling of cells treated with IpaJ under distinct physiological conditions. The protease is highly promiscuous among diverse N-myristoylated proteins in vitro but is remarkably specific to Golgi-associated ARF/ARL family GTPases during Shigella infection. Reconstitution studies revealed a mechanistic framework for substrate discrimination based on IpaJ's function as a GTPase "effector'' of bacterial origin. We now propose a concerted model for IpaJ function that highlights its potential for programmable demyristoylation in vivo.
Gordus A, Pokala N, Levy S, Flavell SW, Bargmann CI
Show All Authors

Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit

CELL 2015 APR 9; 161(2):215-227
Variability is a prominent feature of behavior and is an active element of certain behavioral strategies. To understand how neuronal circuits control variability, we examined the propagation of sensory information in a chemotaxis circuit of C. elegans where discrete sensory inputs can drive a probabilistic behavioral response. Olfactory neurons respond to odor stimuli with rapid and reliable changes in activity, but downstream AIB interneurons respond with a probabilistic delay. The interneuron response to odor depends on the collective activity of multiple neurons-AIB, RIM, and AVA-when the odor stimulus arrives. Certain activity states of the network correlate with reliable responses to odor stimuli. Artificially generating these activity states by modifying neuronal activity increases the reliability of odor responses in interneurons and the reliability of the behavioral response to odor. The integration of sensory information with network states may represent a general mechanism for generating variability in behavior.
Aaltonen T, Amerio S, Amidei D, Anastassov A, Annovi A, Antos J, Apollinari G, Appel JA, Arisawa T, Artikov A, Asaadi J, Ashmanskas W, Auerbach B, Aurisano A, Azfar F, Badgett W, Bae T, Barbaro-Galtieri A, Barnes VE, Barnett BA, Barria P, Bartos P, Bauce M, Bedeschi F, Behari S, Bellettini G, Bellinger J, Benjamin D, Beretvas A, Bhatti A, Bland KR, Blumenfeld B, Bocci A, Bodek A, Bortoletto D, Boudreau J, Boveia A, Brigliadori L, Bromberg C, Brucken E, Budagov J, Budd HS, Burkett K, Busetto G, Bussey P, Butti P, Buzatu A, Calamba A, Camarda S, Campanelli M, Canelli F, Carls B, Carlsmith D, Carosi R, Carrillo S, Casal B, Casarsa M, Castro A, Catastini P, Cauz D, Cavaliere V, Cerri A, Cerrito L, Chen YC, Chertok M, Chiarelli G, Chlachidze G, Cho K, Chokheli D, Clark A, Clarke C, Convery ME, Conway J, Corbo M, Cordelli M, Cox CA, Cox DJ, Cremonesi M, Cruz D, Cuevas J, Culbertson R, d'Ascenzo N, Datta M, de Barbaro P, Demortier L, Deninno M, D'Errico M, Devoto F, Di Canto A, Di Ruzza B, Dittmann JR, Donati S, D'Onofrio M, Dorigo M, Driutti A, Ebina K, Edgar R, Elagin A, Erbacher R, Errede S, Esham B, Farrington S, Ramos JPF, Field R, Flanagan G, Forrest R, Franklin M, Freeman JC, Frisch H, Funakoshi Y, Galloni C, Garfinkel AF, Garosi P, Gerberich H, Gerchtein E, Giagu S, Giakoumopoulou V, Gibson K, Ginsburg CM, Giokaris N, Giromini P, Glagolev V, Glenzinski D, Gold M, Goldin D, Golossanov A, Gomez G, Gomez-Ceballos G, Goncharov M, Lopez OG, Gorelov I, Goshaw AT, Goulianos K, Gramellini E, Grosso-Pilcher C, Group RC, da Costa JG, Hahn SR, Han JY, Happacher F, Hara K, Hare M, Harr RF, Harrington-Taber T, Hatakeyama K, Hays C, Heinrich J, Herndon M, Hocker A, Hong Z, Hopkins W, Hou S, Hughes RE, Husemann U, Hussein M, Huston J, Introzzi G, Iori M, Ivanov A, James E, Jang D, Jayatilaka B, Jeon EJ, Jindariani S, Jones M, Joo KK, Jun SY, Junk TR, Kambeitz M, Kamon T, Karchin PE, Kasmi A, Kato Y, Ketchum W, Keung J, Kilminster B, Kim DH, Kim HS, Kim JE, Kim MJ, Kim SH, Kim SB, Kim YJ, Kim YK, Kimura N, Kirby M, Knoepfel K, Kondo K, Kong DJ, Konigsberg J, Kotwal AV, Kreps M, Kroll J, Kruse M, Kuhr T, Kurata M, Laasanen AT, Lammel S, Lancaster M, Lannon K, Latino G, Lee HS, Lee JS, Leo S, Leone S, Lewis JD, Limosani A, Lipeles E, Lister A, Liu H, Liu Q, Liu T, Lockwitz S, Loginov A, Lucchesi D, Luca A, Lueck J, Lujan P, Lukens P, Lungu G, Lys J, Lysak R, Madrak R, Maestro P, Malik S, Manca G, Manousakis-Katsikakis A, Marchese L, Margaroli F, Marino P, Matera K, Mattson ME, Mazzacane A, Mazzanti P, McNulty R, Mehta A, Mehtala P, Mesropian C, Miao T, Mietlicki D, Mitra A, Miyake H, Moed S, Moggi N, Moon CS, Moore R, Morello MJ, Mukherjee A, Muller T, Murat P, Mussini M, Nachtman J, Nagai Y, Naganoma J, Nakano I, Napier A, Nett J, Neu C, Nigmanov T, Nodulman L, Noh SY, Norniella O, Oakes L, Oh SH, Oh YD, Oksuzian I, Okusawa T, Orava R, Ortolan L, Pagliarone C, Palencia E, Palni P, Papadimitriou V, Parker W, Pauletta G, Paulini M, Paus C, Phillips TJ, Piacentino G, Pianori E, Pilot J, Pitts K, Plager C, Pondrom L, Poprocki S, Potamianos K, Pranko A, Prokoshin F, Ptohos F, Punzi G, Fernandez IR, Renton P, Rescigno M, Rimondi F, Ristori L, Robson A, Rodriguez T, Rolli S, Ronzani M, Roser R, Rosner JL, Ruffini F, Ruiz A, Russ J, Rusu V, Sakumoto WK, Sakurai Y, Santi L, Sato K, Saveliev V, Savoy-Navarro A, Schlabach P, Schmidt EE, Schwarz T, Scodellaro L, Scuri F, Seidel AS, Seiya Y, Semenov A, Sforza F, Shalhout SZ, Shears T, Shepard PF, Shimojima M, Shochet M, Shreyber-Tecker I, Simonenko A, Sliwa K, Smith JR, Snider FD, Song H, Sorin V, St Denis R, Stancari M, Stentz D, Strologas J, Sudo Y, Sukhanov A, Suslov I, Takemasa K, Takeuchi Y, Tang J, Tecchio M, Teng PK, Thom J, Thomson E, Thukral V, Toback D, Tokar S, Tollefson K, Tomura T, Tonelli D, Torre S, Torretta D, Totaro P, Trovato M, Ukegawa F, Uozumi S, Vazquez F, Velev G, Vellidis C, Vernieri C, Vidal M, Vilar R, Vizan J, Vogel M, Volpi G, Wagner P, Wallny R, Wang SM, Waters D, Wester WC, Whiteson D, Wicklund AB, Wilbur S, Williams HH, Wilson JS, Wilson P, Winer BL, Wittich P, Wolbers S, Wolfe H, Wright T, Wu X, Wu Z, Yamamoto K, Yamato D, Yang T, Yang UK, Yang YC, Yao WM, Yeh GP, Yi K, Yoh J, Yorita K, Yoshida T, Yu GB, Yu I, Zanetti AM, Zeng Y, Zhou C, Zucchelli S
Show All Authors

Constraints on Models of the Higgs Boson with Exotic Spin and Parity using Decays to Bottom-Antibottom Quarks in the Full CDF Data Set

PHYSICAL REVIEW LETTERS 2015 APR 10; 114(14):? Article 141802
A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity J(P) = 0(-) and a gravitonlike Higgs boson with J(P) = 2(+), assuming for both a mass of 125 GeV/c(2). We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of root s = 1.96 TeV, and correspond to an integrated luminosity of 9.45 fb(-1). We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125 GeV/c(2) at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state.
Della-Maggiore V, Landi SM, Villalta JI
Show All Authors

Sensorimotor Adaptation: Multiple Forms of Plasticity in Motor Circuits

NEUROSCIENTIST 2015 APR; 21(2):109-125
One of the most striking properties of the adult central nervous system is its ability to undergo changes in function and/or structure. In mammals, learning is a major inducer of adaptive plasticity. Sensorimotor adaptation is a type of proceduralmotorlearning that allows maintaining accurate movements in the presence of environmental or internal perturbations by adjusting motor output. In this work, we will review experimental evidence gathered from rodents and human and nonhuman primates pointing to possible sites of adaptation-related plasticity at different levels of organization of the nervous system.
Thinon E, Hang HC
Show All Authors

Chemical reporters for exploring protein acylation

BIOCHEMICAL SOCIETY TRANSACTIONS 2015 APR; 43(?):253-261
Proteins are acylated by a variety of metabolites that regulates many important cellular pathways in all kingdoms of life. Acyl groups in cells can vary in structure from the smallest unit, acetate, to modified long-chain fatty acids, all of which can be activated and covalently attached to diverse amino acid side chains and consequently modulate protein function. For example, acetylation of Lys residues can alter the charge state of proteins and generate new recognition elements for protein-protein interactions. Alternatively, long-chain fatty-acylation targets proteins to membranes and enables spatial control of cell signalling. To facilitate the analysis of protein acylation in biology, acyl analogues bearing alkyne or azide tags have been developed that enable fluorescent imaging and proteomic profiling of modified proteins using bioorthogonal ligation methods. Herein, we summarize the currently available acylation chemical reporters and highlight their utility to discover and quantify the roles of protein acylation in biology.
Belasco J, Louie JS, Gulati N, Wei N, Nograles K, Fuentes-Duculan J, Mitsui H, Suarez-Farinas M, Krueger JG
Show All Authors

Comparative Genomic Profiling of Synovium Versus Skin Lesions in Psoriatic Arthritis

ARTHRITIS & RHEUMATOLOGY 2015 APR; 67(4):934-944
Objective. To our knowledge, there is no broad genomic analysis comparing skin and synovium in psoriatic arthritis (PsA). Also, there is little understanding of the relative levels of cytokines and chemokines in skin and synovium. The purpose of this study was to better define inflammatory pathways in paired lesional skin and affected synovial tissue in patients with PsA. Methods. We conducted a comprehensive analysis of cytokine and chemokine activation and genes representative of the inflammatory processes in PsA. Paired PsA synovial tissue and skin samples were obtained from 12 patients on the same day. Gene expression studies were performed using Affymetrix HGU133 Plus 2.0 arrays. Confirmatory quantitative real-time polymerase chain reaction (PCR) was performed on selected transcripts. Cell populations were assessed by immunohistochemistry and immunofluorescence. Results. Globally, gene expression in PsA synovium was more closely related to gene expression in PsA skin than to gene expression in synovium in other forms of arthritis. However, PsA gene expression patterns in skin and synovium were clearly distinct, showing a stronger interleukin-17 (IL-17) gene signature in skin than in synovium and more equivalent tumor necrosis factor (TNF) and interferon-gamma gene signatures in both tissues. These results were confirmed with real-time PCR. Conclusion. This is the first comprehensive molecular comparison of paired lesional skin and affected synovial tissue samples in PsA. Our results support clinical trial data showing that PsA skin and joint disease are similarly responsive to TNF antagonists, while IL-17 antagonists have better results in PsA skin than in PsA joints. Genes selectively expressed in PsA synovium might direct future therapies for PsA.