Publications search

Found 37684 matches. Displaying 5791-5800
Bargmann CI
Show All Authors

How the New Neuroscience Will Advance Medicine

JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 2015 JUL 21; 314(3):221-222
Bennett JL, Nickerson M, Costello F, Sergott RC, Calkwood JC, Galetta SL, Balcer LJ, Markowitz CE, Vartanian T, Morrow M, Moster ML, Taylor AW, Pace TWW, Frohman T, Frohman EM
Show All Authors

Re-evaluating the treatment of acute optic neuritis

JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY 2015 JUL; 86(7):799-808
Clinical case reports and prospective trials have demonstrated a reproducible benefit of hypothalamic-pituitary-adrenal (HPA) axis modulation on the rate of recovery from acute inflammatory central nervous system (CNS) demyelination. As a result, corticosteroid preparations and adrenocorticotrophic hormones are the current mainstays of therapy for the treatment of acute optic neuritis (AON) and acute demyelination in multiple sclerosis. Despite facilitating the pace of recovery, HPA axis modulation and corticosteroids have failed to demonstrate long-term benefit on functional recovery. After AON, patients frequently report visual problems, motion perception difficulties and abnormal depth perception despite 'normal' (20/20) vision. In light of this disparity, the efficacy of these and other therapies for acute demyelination require re-evaluation using modern, high-precision paraclinical tools capable of monitoring tissue injury. In no arena is this more amenable than AON, where a new array of tools in retinal imaging and electrophysiology has advanced our ability to measure the anatomic and functional consequences of optic nerve injury. As a result, AON provides a unique clinical model for evaluating the treatment response of the derivative elements of acute inflammatory CNS injury: demyelination, axonal injury and neuronal degeneration. In this article, we examine current thinking on the mechanisms of immune injury in AON, discuss novel technologies for the assessment of optic nerve structure and function, and assess current and future treatment modalities. The primary aim is to develop a framework for rigorously evaluating interventions in AON and to assess their ability to preserve tissue architecture, re-establish normal physiology and restore optimal neurological function.
Teng MWL, Bowman EP, McElwee JJ, Smyth MJ, Casanova JL, Cooper AM, Cua DJ
Show All Authors

IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases

NATURE MEDICINE 2015 JUL; 21(7):719-729
The cytokine interleukin-12 (IL-12) was thought to have a central role in T cell-mediated responses in inflammation for more than a decade after it was first identified. Discovery of the cytokine IL-23, which shares a common p40 subunit with IL-12, prompted efforts to clarify the relative contribution of these two cytokines in immune regulation. Ustekinumab, a therapeutic agent targeting both cytokines, was recently approved to treat psoriasis and psoriatic arthritis, and related agents are in clinical testing for a variety of inflammatory disorders. Here we discuss the therapeutic rationale for targeting these cytokines, the unintended consequences for host defense and tumor surveillance and potential ways in which these therapies can be applied to treat additional immune disorders.
Zeng WW, Lu YH, Lee J, Friedman JM
Show All Authors

Reanalysis of parabiosis of obesity mutants in the age of leptin

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2015 JUL 21; 112(29):E3874-E3882
In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not post-translationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin(-/-) double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure.
Glass MJ, Wang G, Coleman CG, Chan J, Ogorodnik E, Van Kempen TA, Milner TA, Butler SD, Young CN, Davisson RL, Iadecola C, Pickel VM
Show All Authors

NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II

JOURNAL OF NEUROSCIENCE 2015 JUL 1; 35(26):9558-9567
Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II.
Wang TT, Maamary J, Tan GS, Bournazos S, Davis CW, Krammer F, Schlesinger SJ, Palese P, Ahmed R, Ravetch JV
Show All Authors

Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy

CELL 2015 JUL 2; 162(1):160-169
Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory Fc gamma RIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.
Rickman KA, Lach FP, Abhyankar A, Donovan FX, Sanborn EM, Kennedy JA, Sougnez C, Gabriel SB, Elemento O, Chandrasekharappa SC, Schindler D, Auerbach AD, Smogorzewska A
Show All Authors

Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia

CELL REPORTS 2015 JUL 7; 12(1):35-41
Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT.
McEwen BS, McKittrick CR, Tamashiro KLK, Sakai RR
Show All Authors

The brain on stress: Insight from studies using the Visible Burrow System

PHYSIOLOGY & BEHAVIOR 2015 JUL 1; 146(?):47-56
The discovery of adrenal steroid receptors outside of the hypothalamus in the hippocampus and other forebrain regions catalyzed research on the effects of stress upon cognitive function, emotions and self-regulatory behaviors as well as the molecular, cellular and neuroanatomical mechanisms underlying acute and chronic stress effects on the brain. Indeed, this work has shown that the brain is a plastic and vulnerable organ in the face of acute and chronic stress. The insight that Bob and Caroline Blanchard had in developing and interpreting findings using the Visible Burrow System model made an enormous contribution to the current view that the human brain is very sensitive to the social environment and to agonistic interactions between individuals. Their collaboration with Sakai and McEwen at The Rockefeller University extended application of the Visible Burrow System model to demonstrate that it also was a unique and highly relevant neuroethological model with which to study stress and adaptation to stressors. Those studies focused on the brain and systemic organ responses to stress and, in turn, described that the brain is also very responsive to changes in systemic physiology. (C) 2015 Elsevier Inc. All rights reserved.
Montiel D, Kang HS, Chang FY, Charlop-Powers Z, Brady SF
Show All Authors

Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2015 JUL 21; 112(29):8953-8958
Large-scale sequencing of prokaryotic (meta) genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.
Flores-Montoya MG, Alvarez JM, Sobin C
Show All Authors

Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure

TOXICOLOGY LETTERS 2015 JUL 2; 236(1):69-74
Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in preadolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (lowdose), or 330 ppm (higher-dose) lead acetate (N = 33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 mu g/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL x sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice. (C) 2015 Elsevier Ireland Ltd. All rights reserved.