Publications search

Found 37684 matches. Displaying 5641-5650
Lee J, Breton G, Aljoufi A, Zhou YJ, Puhr S, Nussenzweig MC, Liu K
Show All Authors

Clonal analysis of human dendritic cell progenitor using a stromal cell culture

JOURNAL OF IMMUNOLOGICAL METHODS 2015 OCT; 425(?):21-26
Different dendritic cell (DC) subsets co-exist in humans and coordinate the immune response. Having a short life, DCs must be constantly replenished from their progenitors in the bone marrow through hematopoiesis. Identification of a DC-restricted progenitor in mouse has improved our understanding of how DC lineage diverges from myeloid and lymphoid lineages. However, identification of the DC-restricted progenitor in humans has not been possible because a system that simultaneously nurtures differentiation of human DCs, myeloid and lymphoid cells, is lacking. Here we report a cytokine and stromal cell culture that allows evaluation of CD34(+) progenitor potential to all three DC subsets as well as other myeloid and lymphoid cells, at a single cell level. Using this system, we show that human granulocyte macrophage progenitors are heterogeneous and contain restricted progenitors to DCs. (C) 2015 Published by Elsevier B.V.
Sullivan JM, Badimon A, Schaefer U, Ayata P, Gray J, Chung CW, von Schimmelmann M, Zhang F, Garton N, Smithers N, Lewis H, Tarakhovsky A, Prinjha RK, Schaefer A
Show All Authors

Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice

JOURNAL OF EXPERIMENTAL MEDICINE 2015 OCT 19; 212(11):1771-1781
Studies investigating the causes of autism spectrum disorder (ASD) point to genetic, as well as epigenetic, mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here, we identify the bromodomain and extraterminal domain-containing proteins (BETs) as epigenetic regulators of genes involved in ASD-like behaviors in mice. We found that the pharmacological suppression of BET proteins in the brain of young mice, by the novel, highly specific, brain-permeable inhibitor I-BET858 leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome. Many of the I-BET858-affected genes have been linked to ASD in humans, thus suggesting the key role of the BET-controlled gene network in the disorder. Our studies suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.
Pedicord VA, Mucida D
Show All Authors

"A Sledgehammer Breaks Glass but Forges Steel": Bacteria Adhesion Shapes Gut Immunity

CELL 2015 OCT 8; 163(2):273-274
Gut bacteria are known to affect immune cell development, but most intestinal lymphocytes have no direct contact with luminal bacteria. Two studies by Atarashi et al. and Sano et al. shed light on how bacterial adhesion can cue intestinal epithelial cells to direct differentiation of gut T cells.
Trojanowski NF, Nelson MD, Flavell SW, Fang-Yen C, Raizen DM
Show All Authors

Distinct Mechanisms Underlie Quiescence during Two Caenorhabditis elegans Sleep-Like States

JOURNAL OF NEUROSCIENCE 2015 OCT 28; 35(43):14571-14584
Electrophysiological recordings have enabled identification of physiologically distinct yet behaviorally similar states of mammalian sleep. In contrast, sleep in nonmammals has generally been identified behaviorally and therefore regarded as a physiologically uniform state characterized by quiescence of feeding and locomotion, reduced responsiveness, and rapid reversibility. The nematode Caenorhabditis elegans displays sleep-like quiescent behavior under two conditions: developmentally timed quiescence (DTQ) occurs during larval transitions, and stress-induced quiescence (SIQ) occurs in response to exposure to cellular stressors. Behaviorally, DTQ and SIQ appear identical. Here, we use optogenetic manipulations of neuronal and muscular activity, pharmacology, and genetic perturbations to uncover circuit and molecular mechanisms of DTQ and SIQ. We find that locomotion quiescence induced by DTQ- and SIQ-associated neuropeptides occurs via their action on the nervous system, although their neuronal target(s) and/or molecular mechanisms likely differ. Feeding quiescence during DTQ results from a loss of pharyngeal muscle excitability, whereas feeding quiescence during SIQ results from a loss of excitability in the nervous system. Together these results indicate that, as in mammals, quiescence is subserved by different mechanisms during distinct sleep-like states in C. elegans.
Tulin F, Cross FR
Show All Authors

Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas

PLANT CELL 2015 OCT; 27(10):2727-2742
We analyzed global transcriptome changes during synchronized cell division in the green alga Chlamydomonas reinhardtii. The Chlamydomonas cell cycle consists of a long G1 phase, followed by an S/M phase with multiple rapid, alternating rounds of DNA replication and segregation. We found that the S/M period is associated with strong induction of; 2300 genes, many with conserved roles in DNA replication or cell division. Other genes, including many involved in photosynthesis, are reciprocally downregulated in S/M, suggesting a gene expression split correlating with the temporal separation between G1 and S/M. The Chlamydomonas cell cycle is synchronized by light-dark cycles, so in principle, these transcriptional changes could be directly responsive to light or to metabolic cues. Alternatively, cell-cycle-periodic transcription may be directly regulated by cyclin-dependent kinases. To distinguish between these possibilities, we analyzed transcriptional profiles of mutants in the kinases CDKA and CDKB, as well as other mutants with distinct cell cycle blocks. Initial cell-cycle-periodic expression changes are largely CDK independent, but later regulation (induction and repression) is under differential control by CDKA and CDKB. Deviation from the wild-type transcriptional program in diverse cell cycle mutants will be an informative phenotype for further characterization of the Chlamydomonas cell cycle.
Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, Bustamante J, Okada S, Stoddard JL, Deenick EK, Pelham SJ, Payne K, Boisson-Dupuis S, Puel A, Kobayashi M, Arkwright PD, Kilic SS, El Baghdadi J, Nonoyama S, Minegishi Y, Mahdaviani SA, Mansouri D, Bousfiha A, Blincoe AK, French MA, Hsu P, Campbell DE, Stormon MO, Wong M, Adelstein S, Smart JM, Fulcher DA, Cook MC, Phan TG, Stepensky P, Boztug K, Kansu A, Ikinciogullari A, Baumann U, Beier R, Roscioli T, Ziegler JB, Gray P, Picard C, Grimbacher B, Warnatz K, Holland SM, Casanova JL, Uzel G, Tangye SG
Show All Authors

Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies

JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY 2015 OCT; 136(4):993-1006
Background: Follicular helper T (T-FH) cells underpin T cell-dependent humoral immunity and the success of most vaccines. T-FH cells also contribute to human immune disorders, such as autoimmunity, immunodeficiency, and malignancy. Understanding the molecular requirements for the generation and function of T-FH cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunologic abnormalities. Objective: We sought to determine the signaling pathways and cellular interactions required for the development and function of T-FH cells in human subjects. Methods: Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating follicular helper T (cT(FH)) cell subsets, memory B cells, and serum immunoglobulin levels were quantified and functionally assessed in healthy control subjects, as well as in patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS, or BTK. Results: Loss-of-function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS, or BTK reduced cT(FH) cell frequencies. STAT3 and IL21/R LOF and STAT1 gain-of-function mutations skewed cT(FH) cell differentiation toward a phenotype characterized by overexpression of IFN-gamma and programmed death 1. IFN-gamma inhibited cT(FH) cell function in vitro and in vivo, as corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1, and IL12RB1 LOF mutations. Conclusion: Specific mutations affect the quantity and quality of cT(FH) cells, highlighting the need to assess T-FH cells in patients by using multiple criteria, including phenotype and function. Furthermore, IFN-gamma functions in vivo to restrain T-FH cell-induced B-cell differentiation. These findings shed new light on T-FH cell biology and the integrated signaling pathways required for their generation, maintenance, and effector function and explain the compromised humoral immunity seen in patients with some PIDs.
Huang TT, Lai HC, Ko YF, Ojcius DM, Lan YW, Martel J, Young JD, Chong KY
Show All Authors

Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

SCIENTIFIC REPORTS 2015 OCT 26; 5(?):? Article 15282
Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1 beta and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-beta 1-induced expression of fibronectin and alpha-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-beta 1-treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin-induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-beta 1 in lung tissues, and this effect is accompanied by decreased collagen 3 alpha 1 and alpha-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X(7)R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis.
Ye J, Yang JY, Sun YW, Zhao PZ, Gao SQ, Jung C, Qu J, Fang RX, Chua NH
Show All Authors

Geminivirus Activates ASYMMETRIC LEAVES 2 to Accelerate Cytoplasmic DCP2-Mediated mRNA Turnover and Weakens RNA Silencing in Arabidopsis

PLoS Pathogens 2015 OCT; 11(10):? Article e1005196
Aberrant viral RNAs produced in infected plant cells serve as templates for the synthesis of dsRNAs. The derived virus-related small interfering RNAs (siRNA) mediate cleavage of viral RNAs by post-transcriptional gene silencing (PTGS), thus blocking virus multiplication. Here, we identified ASYMMETRIC LEAVES2 (AS2) as a new component of plant P body complex which mediates mRNA decapping and degradation. We found that AS2 promotes DCP2 decapping activity, accelerates mRNA turnover rate, inhibits siRNA accumulation and functions as an endogenous suppressor of PTGS. Consistent with these findings, as2 mutant plants are resistant to virus infection whereas AS2 over-expression plants are hypersensitive. The geminivirus nuclear shuttle protein BV1 protein, which shuttles between nuclei and cytoplasm, induces AS2 expression, causes nuclear exit of AS2 to activate DCP2 decapping activity and renders infected plants more sensitive to viruses. These principles of gene induction and shuttling of induced proteins to promote mRNA decapping in the cytosol may be used by viral pathogens to weaken antiviral defenses in host plants.
Heller E, Fuchs E
Show All Authors

Tissue patterning and cellular mechanics

JOURNAL OF CELL BIOLOGY 2015 OCT 26; 211(2):219-231
In development, cells organize into biological tissues through cell growth, migration, and differentiation. Globally, this process is dictated by a genetically encoded program in which secreted morphogens and cell-cell interactions prompt the adoption of unique cell fates. Yet, at its lowest level, development is achieved through the modification of cell cell adhesion and actomyosin-based contractility, which set the level of tension within cells and dictate how they pack together into tissues. The regulation of tension within individual cells and across large groups of cells is a major driving force of tissue organization and the basis of all cell shape change and cell movement in development.
Van Kempen TA, Dodos M, Woods C, Marques-Lopes J, Justice NJ, Iadecola C, Pickel VM, Glass MJ, Milner TA
Show All Authors

SEX DIFFERENCES IN NMDA GluN1 PLASTICITY IN ROSTRAL VENTROLATERAL MEDULLA NEURONS CONTAINING CORTICOTROPIN-RELEASING FACTOR TYPE 1 RECEPTOR FOLLOWING SLOW-PRESSOR ANGIOTENSIN II HYPERTENSION

NEUROSCIENCE 2015 OCT 29; 307(?):83-97
There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-Daspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFPneurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in AngII-induced hypertension is reflected by NMDA receptor trafficking in presumptive sympathoexcitatory neurons in the RVLM. (C) 2015 IBRO. Published by Elsevier Ltd. All rights reserved.