Publications search

Found 37684 matches. Displaying 5471-5480
Ouspenskaia T, Matos I, Mertz AF, Fiore VF, Fuchs E
Show All Authors

WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation

CELL 2016 JAN 14; 164(1-2):156-169
Adult stem cell (SC) maintenance and differentiation are known to depend on signals received from the niche. Here, however, we demonstrate a mechanism for SC specification and regulation that is niche independent. Using immunofluorescence, live imaging, genetics, cell-cycle analyses, in utero lentiviral transduction, and lineage-tracing, we show that in developing hair buds, SCs are born from asymmetric divisions that differentially display WNT and SHH signaling. Displaced WNTlo suprabasal daughters become SCs that respond to paracrine SHH and symmetrically expand. By contrast, basal daughters remain WNThi. They express but do not respond to SHH and hence maintain slow-cycling, asymmetric divisions. Over time, they become short-lived progenitors, generating differentiating daughters rather than SCs. Thus, in contrast to an established niche that harbors a fixed SC pool whose expelled progeny differentiate, asymmetric divisions first specify and displace early SCs into an environment conducive to expansion and later restrict their numbers by switching asymmetric fates.
Shamseldin HE, Faqeih E, Alasmari A, Zaki MS, Gleeson JG, Alkuraya FS
Show All Authors

Mutations in UNC80, Encoding Part of the UNC79-UNC80-NALCN Channel Complex, Cause Autosomal-Recessive Severe Infantile Encephalopathy

AMERICAN JOURNAL OF HUMAN GENETICS 2016 JAN 7; 98(1):210-215
Brain channelopathies represent a growing class of brain disorders that usually result in paroxysmal disorders, although their role in other neurological phenotypes, including the recently described NALCN-related infantile encephalopathy, is increasingly recognized. In three Saudi Arabian families and one Egyptian family all affected by a remarkably similar phenotype (infantile encephalopathy and largely normal brain MRI) to that of NALCN-related infantile encephalopathy, we identified a locus on 2q34 in which whole-exome sequencing revealed three, including two apparently loss-of-function, recessive mutations in UNC80. UNC80 encodes a large protein that is necessary for the stability and function of NALCN and for bridging NALCN to UNC79 to form a functional complex. Our results expand the clinical relevance of the UNC79-UNC80-NALCN channel complex.
Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, Simchoni N, Rahman A, Garg A, Weinstein EG, Oropallo M, Gaylord M, Ungaro R, Cunningham-Rundles C, Alexandropoulos K, Mucida D, Merad M, Cerutti A, Mehandru S
Show All Authors

Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses

JOURNAL OF EXPERIMENTAL MEDICINE 2016 JAN 11; 213(1):53-73
Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103(+) and CD24(+)CD11b(+) DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell-dependent or -independent pathways. Compared with lung DCs (LDC), lung CD64(+) macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-beta (TGF-beta) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid-dependent up-regulation of alpha 4 beta 7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT-specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs.
Levran O, Peles E, Randesi M, da Rosa JC, Ott J, Rotrosen J, Adelson M, Kreek MJ
Show All Authors

Glutamatergic and GABAergic susceptibility loci for heroin and cocaine addiction in subjects of African and European ancestry

PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY 2016 JAN 4; 64(?):118-123
Background: Drug addiction, a leading health problem, is a chronic brain disease with a significant genetic component. Animal models and clinical studies established the involvement of glutamate and GABA neurotransmission in drug addiction. This study was designed to assess if 258 variants in 27 genes of these systems contribute to the vulnerability to develop drug addiction. Methods: Four independent analyses were conducted in a sample of 1860 subjects divided according to drug of abuse (heroin or cocaine) and ancestry (African and European). Results: A total of 11 SNPs in eight genes showed nominally significant associations (P < 0.01) with heroin and/or cocaine addiction in one or both ancestral groups but the associations did not survive correction for multiple testing. Of these SNPs, the GAD1 upstream SNP rs1978340 is potentially functional as it was shown to affect GABA concentrations in the cingulate cortex. In addition, SNPs GABRB3 rs7165224; DBI rs12613135; GAD1 SNPs rs2058725, rs1978340, rs2241164; and GRIN2A rs1650420 were previously reported in associations with drug addiction or related phenotypes. Conclusions: The study supports the involvement of genetic variation in the glutamatergic and GABAergic systems in drug addiction with partial overlap in susceptibility loci between cocaine and heroin addiction. (C) 2015 Elsevier Inc. All rights reserved.
Bhupathiraju NVSDK, Rizvi W, Batteas JD, Drain CM
Show All Authors

Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics

ORGANIC & BIOMOLECULAR CHEMISTRY 2016; 14(2):389-408
Porphyrinoids are robust heterocyclic dyes studied extensively for their applications in medicine and as photonic materials because of their tunable photophysical properties, diverse means of modifying the periphery, and the ability to chelate most transition metals. Commercial applications include their use as phthalocyanine dyes in optical discs, porphyrins in photodynamic therapy, and as oxygen sensors. Most applications of these dyes require exocyclic moieties to improve solubility, target diseases, modulate photophysical properties, or direct the self-organization into architectures with desired photonic properties. The synthesis of the porphyrinoid depends on the desired application, but the de novo synthesis often involves several steps, is time consuming, and results in low isolated yields. Thus, the application of core porphyrinoid platforms that can be rapidly and efficiently modified to evaluate new molecular architectures allows researchers to focus on the design concepts rather than the synthesis methods, and opens porphyrinoid chemistry to a broader scientific community. We have focused on several widely available, commercially viable porphyrinoids as platforms: meso-perfluorophenylporphyrin, perfluorophthalocyanine, and meso-perfluorophenylcorrole. The perfluorophenylporphyrin is readily converted to the chlorin, bacteriochlorin, and isobacteriochlorin. Derivatives of all six of these core platforms can be efficiently and controllably made via mild nucleophilic aromatic substitution reactions using primary S, N, and O nucleophiles bearing a wide variety of functional groups. The remaining fluoro groups enhance the photo and oxidative stability of the dyes and can serve as spectroscopic signatures to characterize the compounds or in imaging applications using F-19 NMR. This review provides an overview of the chemistry of fluorinated porphyrinoids that are being used as a platform to create libraries of photo-active compounds for applications in medicine and materials.
Schwiedrzik CM, Bernstein B, Melloni L
Show All Authors

Motion along the mental number line reveals shared representations for numerosity and space

ELIFE 2016 JAN 15; 5(?):? Article e10806
Perception of number and space are tightly intertwined. It has been proposed that this is due to 'cortical recycling', where numerosity processing takes over circuits originally processing space. Do such 'recycled' circuits retain their original functionality? Here, we investigate interactions between numerosity and motion direction, two functions that both localize to parietal cortex. We describe a new phenomenon in which visual motion direction adapts nonsymbolic numerosity perception, giving rise to a repulsive aftereffect: motion to the left adapts small numbers, leading to overestimation of numerosity, while motion to the right adapts large numbers, resulting in underestimation. The reference frame of this effect is spatiotopic. Together with the tuning properties of the effect this suggests that motion direction-numerosity cross-adaptation may occur in a homolog of area LIP. 'Cortical recycling' thus expands but does not obliterate the functions originally performed by the recycled circuit, allowing for shared computations across domains.
Papavasiliou FN, Chung YC, Gagnidze K, Hajdarovic KH, Cole DC, Bulloch K
Show All Authors

Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS

FRONTIERS IN IMMUNOLOGY 2016 JAN 15; 6(?):? Article UNSP 661
Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in the populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease.
Chung DJ, Pronschinske KB, Shyer JA, Sharma S, Leung S, Curran SA, Lesokhin AM, Devlin SM, Giralt SA, Young JW
Show All Authors

T-cell Exhaustion in Multiple Myeloma Relapse after Autotransplant: Optimal Timing of Immunotherapy

CANCER IMMUNOLOGY RESEARCH 2016 JAN; 4(1):61-71
Multiple myeloma is the most common indication for high-dose chemotherapy and autologous stem cell transplantation (ASCT), and lenalidomide maintenance after transplant is now standard. Although lenalidomide doubles progression-free survival, almost all patients eventually relapse. Posttransplant immunotherapy to improve outcomes after ASCT therefore has great merit but first requires delineation of the dynamics of immune reconstitution. We evaluated lymphocyte composition and function after ASCT to guide optimal timing of immunotherapy and to identify potential markers of relapse. Regulatory T cells (Treg) decline as CD8(+) T cells expand during early lymphocyte recovery after ASCT, markedly reducing the Treg: CD8(+) effector T-cell ratio. These CD8(+) T cells can respond to autologous dendritic cells presenting tumor antigen in vitro as early as day +12 after transplant, becoming antigen-specific cytolytic T-lymphocyte effectors and thereby demonstrating preservation of cellular reactivity. CD4(+) and CD8(+) T cells express the negative regulatory molecules, CTLA-4, PD-1, LAG-3, and TIM-3, before and after ASCT. A subpopulation of exhausted/senescent CD8(+) T cells, however, downregulates CD28 and upregulates CD57 and PD-1, characterizing immune impairment and relapse after ASCT. Relapsing patients have higher numbers of these cells at +3 months after transplant, but before detection of clinical disease, indicating their applicability in identifying patients at higher risk of relapse. PD-1 blockade also revives the proliferation and cytokine secretion of the hyporesponsive, exhausted/senescent CD8(+) T cells in vitro. Collectively, these results identify T-cell exhaustion/senescence as a distinguishing feature of relapse and support early introduction of immunotherapy to stimulate antitumor immunity after ASCT. (C) 2015 AACR.
Musazzi L, Marrocco J
Show All Authors

Stress Response and Perinatal Reprogramming: Unraveling (Mal) adaptive Strategies

NEURAL PLASTICITY 2016; ?(?):? Article 6752193
Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal) adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli.
Keller A
Show All Authors

Is conscious content available only to the skeletal muscle system?

BEHAVIORAL AND BRAIN SCIENCES 2016; 39(?):? Article e183
I applaud Morsella et al.'s approach to investigate consciousness in terms of behavioral control. After all, the function of the brain is to control behavior, and consciousness contributes to the function of the brain. However, I question whether conscious content is available only to the skeletal muscle system, as the principle of parallel responses into skeletal muscle (PRISM) (Morsella 2005) proposes.