Publications search

Found 37684 matches. Displaying 5201-5210
Kutler DI, Patel KR, Auerbach AD, Kennedy J, Lach FP, Sanborn E, Cohen MA, Kuhel WI, Smogorzewska A
Show All Authors

Natural history and management of Fanconi anemia patients with head and neck cancer: A 10-year follow-up

LARYNGOSCOPE 2016 APR; 126(4):870-879
Objectives/HypothesisTo describe the management and outcomes of Fanconi anemia (FA) patients with head and neck squamous cell carcinoma. Study DesignCohort study. MethodsDemographic information, prognostic factors, therapeutic management, and survival outcomes for FA patients enrolled in the International Fanconi Anemia Registry who developed head and neck squamous cell carcinoma (HNSCC) were analyzed. ResultsThirty-five FA patients were diagnosed with HNSCC at a mean age of 32 years. The most common site of primary cancer was the oral cavity (26 of 35, 74%). Thirty patients underwent surgical resection of the cancer. Sixteen patients received radiation therapy with an average radiation dose of 5,050 cGy. The most common toxicities were high-grade mucositis (9 of 16, 56%), hematologic abnormalities (8 of 16, 50%), and dysphagia (8 of 16, 50%). Three patients received conventional chemotherapy and had significant complications, whereas three patients who received targeted chemotherapy with cetuximab had fewer toxicities. The 5-year overall survival rate was 39%, with a cause-specific survival rate of 47%. ConclusionsFanconi anemia patients have a high risk of developing aggressive HNSCC at an early age. Fanconi anemia patients can tolerate complex ablative and reconstructive surgeries, but careful postoperative care is required to reduce morbidity. The treatment of FA-associated HNSCC is difficult secondary to the poor tolerance of radiation and chemotherapy. However, radiation should be used for high-risk cancers due to the poor survival in these patients. Level of Evidence4. Laryngoscope, 126:870-879, 2016
Kleinboelting S, Ramos-Espiritu L, Buck H, Colis L, van den Heuvel J, Glickman JF, Levin LR, Buck J, Steegborn C
Show All Authors

Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site

JOURNAL OF BIOLOGICAL CHEMISTRY 2016 APR 29; 291(18):9776-9784
The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC.bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC.ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs.
Krueger J, Clark JD, Suarez-Farinas M, Fuentes-Duculan J, Cueto I, Wang CQ, Tan HM, Wolk R, Rottinghaus ST, Whitley MZ, Valdez H, von Schack D, O'Neil SP, Reddy PS, Tatulych S
Show All Authors

Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: A randomized phase 2 study

JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY 2016 APR; 137(4):1079-1090
Background: Tofacitinib is an oral Janus kinase inhibitor being investigated for psoriasis. Objective: We sought to elucidate the molecular mechanisms underlying the clinical efficacy of tofacitinib in patients with psoriasis. Methods: Twelve patients with plaque psoriasis were randomized (3: 1) to receive 10 mg of tofacitinib or placebo twice daily for 12 weeks. Biopsy specimens were taken from nonlesional (baseline) and lesional (baseline, days 1 and 3, and weeks 1, 2, 4, and 12) skin. Biopsy specimens were examined for psoriatic epidermal features (thickness, Ki67(+) keratinocytes and keratin 16 [KRT16] mRNA expression, and phosphorylated signal transducer and activator of transcription [pSTAT](+) nuclei) and T-cell and dendritic cell (DC) subsets by using immunohistochemistry, and mRNA transcripts were quantified by using a microarray. Results: In lesional skin keratinocyte pSTAT1 and pSTAT3 staining was increased at baseline but reduced after 1 day of tofacitinib (baseline, median of 1290 pSTAT1(+) cells/mu m(2); day 1, median of 332 pSTAT1(+) cells/mu m(2); and nonlesional, median of 155 pSTAT1(+) cells/mu m(2)). Epidermal thickness and KRT16 mRNA expression were significantly and progressively reduced after days 1 and 3 of tofacitinib administration, respectively (eg, KRT16 decreased 2.74-fold, day 3 vs baseline, P = .016). Decreases in DC and T-cell numbers were observed after weeks 1 and 2, respectively. At week 4, significant decreases in IL-23/T(H)17 pathways were observed that persisted through week 12. Improvements in clinical and histologic features were strongly associated with changes in expression of psoriasis-related genes and reduction in IL-17 gene expression. Conclusions: Tofacitinib has a multitiered response in patients with psoriasis: (1) rapid attenuation of keratinocyte Janus kinase/STAT signaling; (2) removal of keratinocyte-induced cytokine signaling, leading to reductions in pathologic DC and T-cell numbers to nonlesional levels; and (3) inhibition of the IL-23/T(H)17 pathway.
Rivera-Torres IO, Jin TB, Cadene M, Chait BT, Poget SF
Show All Authors

Discovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA

SCIENTIFIC REPORTS 2016 APR 5; 6(?):? Article 23904
Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to the three-finger toxin family, but with a unique modification of its disulphide-bridge scaffold. The toxin induces a dose-dependent increase in both open probabilities and mean open times on KcsA in artificial bilayers. Thus, it unexpectedly behaves as a channel activator rather than an inhibitor. A charybdotoxin-sensitive mutant of KcsA exhibits similar susceptibility to Tx7335 as wild-type, indicating that the binding site for Tx7335 is distinct from that of canonical pore-blocker toxins. Based on the extracellular location of the toxin binding site (far away from the intracellular pH gate), we propose that Tx7335 increases potassium flow through KcsA by allosterically reducing inactivation of the channel.
Yapici N, Cohn R, Schusterreiter C, Ruta V, Vosshall LB
Show All Authors

A Taste Circuit that Regulates Ingestion by Integrating Food and Hunger Signals

CELL 2016 APR 21; 165(3):715-729
Ingestion is a highly regulated behavior that integrates taste and hunger cues to balance food intake with metabolic needs. To study the dynamics of ingestion in the vinegar fly Drosophila melanogaster, we developed Expresso, an automated feeding assay that measures individual meal-bouts with high temporal resolution at nanoliter scale. Flies showed discrete, temporally precise ingestion that was regulated by hunger state and sucrose concentration. We identify 12 cholinergic local interneurons (IN1, for "ingestion neurons'') necessary for this behavior. Sucrose ingestion caused a rapid and persistent increase in IN1 interneuron activity in fasted flies that decreased proportionally in response to subsequent feeding bouts. Sucrose responses of IN1 interneurons in fed flies were significantly smaller and lacked persistent activity. We propose that IN1 neurons monitor ingestion by connecting sugar-sensitive taste neurons in the pharynx to neural circuits that control the drive to ingest. Similar mechanisms for monitoring and regulating ingestion may exist in vertebrates.
Hwang HW, Park CY, Goodarzi H, Fak JJ, Mele A, Moore MJ, Saito Y, Darnell RB
Show All Authors

PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage

CELL REPORTS 2016 APR 12; 15(2):423-435
Accurate and precise annotation of 3' UTRs is critical for understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here, we describe a method, poly(A) binding protein-mediated mRNA 3' end retrieval by crosslinking immunoprecipitation (PAPERCLIP), that shows high specificity for mRNA 3' ends and compares favorably with existing 3' end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of which contain a downstream GUKKU motif. Furthermore, in the mouse brain, PAPERCLIP discovers extended 3' UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts, including one in Atp2b2 that is evolutionarily conserved in humans and results in the gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo.
Minis A, Steller H
Show All Authors

Krebs Cycle Moonlights in Caspase Regulation

DEVELOPMENTAL CELL 2016 APR 4; 37(1):1-2
In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation.
To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIVSF162P3N and 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs. IMPORTANCE HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIVSF162P3N-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs.
Kirst C, Timme M, Battaglia D
Show All Authors

Dynamic information routing in complex networks

NATURE COMMUNICATIONS 2016 APR; 7(?):? Article 11061
Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function.
Feng B, Hou DF, Ren HC, Wu PP
Show All Authors

Bose-Einstein condensation of bound pairs of relativistic fermions in a magnetic field

PHYSICAL REVIEW D 2016 APR 14; 93(8):? Article 085019
The Bose-Einstein condensation of bound pairs made of equally and oppositely charged fermions in a magnetic field is investigated using a relativistic model. The Gaussian fluctuations have been taken into account in order to study the spectrum of bound pairs in the strong coupling region. We found, in the weak coupling region, that the condensation temperature increases with an increasing magnetic field displaying the magnetic catalysis effect. In the strong coupling region, the inverse magnetic catalysis appears when the magnetic field is low and is replaced by the usual magnetic catalysis effect when magnetic field is sufficiently high, in contrast to the nonrelativistic case where the inverse magnetic catalysis prevails in the strong coupling region regardless of the strength of the magnetic field. The resulting response to the magnetic field is the consequence of the competition between the dimensional reduction by Landau orbitals in pairing dynamics and the anisotropy of the kinetic spectrum of the bound pairs. We thus conclude that dimensional reduction dominates in the weak domain and strong coupling one except in the small magnetic field region, where the enhanced fluctuations dominate.