Publications search

Found 37684 matches. Displaying 5141-5150
Gagnidze K, Hajdarovic KH, Moskalenko M, Karatsoreos IN, McEwen BS, Bulloch K
Show All Authors

Nuclear receptor REV-ERB alpha mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2016 MAY 17; 113(20):5730-5735
Certain components and functions of the immune system, most notably cytokine production and immune cell migration, are under circadian regulation. Such regulation suggests that circadian rhythms may have an effect on disease onset, progression, and resolution. In the vesicular stomatitis virus (VSV)-induced encephalitis model, the replication, caudal penetration, and survivability of intranasally applied VSV depends on both innate and adaptive immune mechanisms. In the current study, we investigated the effect of circadian time of infection on the progression and outcome of VSV-induced encephalitis and demonstrated a significant decrease in the survival rate in mice infected at the start of the rest cycle, zeitgeber time 0 (ZT0). The lower survival rate in these mice was associated with higher levels of circulating chemokine (C-C motif) ligand 2 (CCL2), a greater number of peripherally derived immune cells accumulating in the olfactory bulb (OB), and increased production of proinflammatory cytokines, indicating an immune-mediated pathology. We also found that the acrophase of molecular circadian clock component REV-ERB alpha mRNA expression in the OB coincides with the start of the active cycle, ZT12, when VSV infection results in a more favorable outcome. This result led us to hypothesize that REV-ERB alpha may mediate the circadian effect on survival following VSV infection. Blocking REV-ERB alpha activity before VSV administration resulted in a significant increase in the expression of CCL2 and decreased survival in mice infected at the start of the active cycle. These data demonstrate that REV-ERB alpha-mediated inhibition of CCL2 expression during viral- induced encephalitis may have a protective effect.
Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA
Show All Authors

Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials against Multidrug-Resistant Acinetobacter baumannii

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 2016 MAY; 60(5):2671-2679
Acinetobacter baumannii is a Gram-negative bacterial pathogen responsible for a range of nosocomial infections. The recent rise and spread of multidrug-resistant A. baumannii clones has fueled a search for alternative therapies, including bacteriophage endolysins with potent antibacterial activities. A common feature of these lysins is the presence of a highly positively charged C-terminal domain with a likely role in promoting outer membrane penetration. In the present study, we show that the C-terminal amino acids 108 to 138 of phage lysin PlyF307, named P307, alone were sufficient to kill A. baumannii (> 3 logs). Furthermore, P307 could be engineered for improved activity, the most active derivative being P307(SQ-8C) (> 5-log kill). Both P307 and P307(SQ-8C) showed high in vitro activity against A. baumannii in biofilms. Moreover, P307(SQ-8C) exhibited MICs comparable to those of levofloxacin and ceftazidime and acted synergistically with polymyxin B. Although the peptides were shown to kill by disrupting the bacterial cytoplasmic membrane, they did not lyse human red blood cells or B cells; however, serum was found to be inhibitory to lytic activity. In a murine model of A. baumannii skin infection, P307(SQ-8C) reduced the bacterial burden by similar to 2 logs in 2 h. This study demonstrates the prospect of using peptide derivatives from bacteriophage lysins to treat topical infections and remove biofilms caused by Gram-negative pathogens.
Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J, Dahan R, Harris RA, Rantalainen M, Klevebring D, Sund M, Brage SE, Fuxe J, Rolny C, Li FB, Ravetch JV, Karlsson MCI
Show All Authors

Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis

CELL REPORTS 2016 MAY 31; 15(9):2000-2011
Tumors are composed of multiple cell types besides the tumor cells themselves, including innate immune cells such as macrophages. Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells present in the tumor microenvironment (TME). Here, they contribute to immunosuppression, enabling the establishment and persistence of solid tumors as well as metastatic dissemination. We have found that the pattern recognition scavenger receptor MARCO defines a subtype of suppressive TAMs and is linked to clinical outcome. An anti-MARCO monoclonal antibody was developed, which induces anti-tumor activity in breast and colon carcinoma, as well as in melanoma models through reprogramming-TAM-populations to a pro-inflammatory phenotype and increasing tumor immunogenicity. This anti-tumor activity is dependent on the inhibitory Fc-receptor, Fc gamma RIIB, and also enhances the efficacy of checkpoint therapy. These results demonstrate that immunotherapies using antibodies designed to modify myeloid cells of the TME represent a promising mode of cancer treatment.
Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM
Show All Authors

Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response

NATURE 2016 MAY 19; 533(7603):416-419
Mitochondrial genomes (mitochondrial DNA, mtDNA) encode essential oxidative phosphorylation (OXPHOS) components. Because hundreds of mtDNAs exist per cell, a deletion in a single mtDNA has little impact. However, if the deletion genome is enriched, OXPHOS declines, resulting in cellular dysfunction. For example, Kearns-Sayre syndrome is caused by a single heteroplasmic mtDNA deletion. More broadly, mtDNA deletion accumulation has been observed in individual muscle cells(1) and dopaminergic neurons(2) during ageing. It is unclear how mtDNA deletions are tolerated or how they are propagated in somatic cells. One mechanism by which cells respond to OXPHOS dysfunction is by activating the mitochondrial unfolded protein response (UPRmt), a transcriptional response mediated by the transcription factor ATFS-1 that promotes the recovery and regeneration of defective mitochondria(3,4). Here we investigate the role of ATFS-1 in the maintenance and propagation of a deleterious mtDNA in a heteroplasmic Caenorhabditis elegans strain that stably expresses wild-type mtDNA and mtDNA with a 3.1-kilobase deletion (Delta mtDNA) lacking four essential genes(5). The heteroplasmic strain, which has 60% Delta mtDNA, displays modest mitochondrial dysfunction and constitutive UPRmt activation. ATFS-1 impairment reduced the Delta mtDNA nearly tenfold, decreasing the total percentage to 7%. We propose that in the context of mtDNA heteroplasmy, UPRmt activation caused by OXPHOS defects propagates or maintains the deleterious mtDNA in an attempt to recover OXPHOS activity by promoting mitochondrial biogenesis and dynamics.
Donovan FX, Kimble DC, Kim Y, Lach FP, Harper U, Kamat A, Jones M, Sanborn EM, Tryon R, Wagner JE, MacMillan ML, Ostrander EA, Auerbach AD, Smogorzewska A, Chandrasekharappa SC
Show All Authors

Paternal or Maternal Uniparental Disomy of Chromosome 16 Resulting in Homozygosity of a Mutant Allele Causes Fanconi Anemia

HUMAN MUTATION 2016 MAY; 37(5):465-468
Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation-carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis.
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M
Show All Authors

Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9

NATURE 2016 MAY 5; 533(7601):125-129
The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells(1,2). CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels)(2). DSBs may also be repaired by homology-directed repair (HDR)(1,2) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations(3). Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient(3-8) and can be corrupted by additional indels(9), preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono-and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Casblocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe))(10) and presenilin 1 (PSEN1M146V)(11) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.
Gleicher N, Kushnir VA, Barad DH
Show All Authors

Risks of spontaneously and IVF-conceived singleton and twin pregnancies differ, requiring reassessment of statistical premises favoring elective single embryo transfer (eSET)

REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY 2016 MAY 3; 14(?):? Article 25
A published review of the literature by Dutch investigators in 2004 suggested significant outcome differences between spontaneously - and in vitro fertilization (IVF) - conceived singleton and twin pregnancies. Here we review whether later studies between 2004-2015 confirmed these findings. Though methodologies of here reviewed studies varied, and all were retrospective, they overall confirmed results of the 2004 review, and supported significant outcome variances between spontaneously- and IVF-conceived pregnancies: IVF singletons demonstrate significantly poorer and IVF twins significantly better perinatal outcomes than spontaneously conceived singletons and twins, with differences stable over time, and with overall obstetrical outcomes significantly improved. Exaggerations of severe IVF twin risks are likely in the 50 % range, while exaggerations of milder perinatal risks are approximately in 25 % range. Though elective single embryo transfers (eSET) have been confirmed to reduce pregnancy chances, they are, nevertheless, increasingly utilized. eSET, equally unquestionably, however, reduces twin pregnancies. Because twin pregnancies have been alleged to increase outcome risks in comparison to singleton pregnancies, here reported findings should affect the ongoing discussion whether increased twin risks are factual. With no risk excess, eSET significantly reduces IVF pregnancy chances without compensatory benefits and, therefore, is not advisable in IVF, unless patients do not wish to conceive twins or have medical contraindications to conceiving twins.
Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, Korkola JE, Thodima V, Califano A, Bosl GJ, Chaganti RSK
Show All Authors

Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification

STEM CELL REPORTS 2016 MAY 10; 6(5):772-783
Human male germ cell tumors (GCTs) are derived from primordial germ cells (PGCs). The master pluripotency regulator and neuroectodermal lineage effector transcription factor SOX2 is repressed in PGCs and the seminoma (SEM) subset of GCTs. The mechanism of SOX2 repression and its significance to GC and GCT development currently are not understood. Here, we show that SOX2 repression in SEM-derived TCam-2 cells is mediated by the Polycomb repressive complex (PcG) and the repressive H3K27me3 chromatin mark that are enriched at its promoter. Furthermore, SOX2 repression in TCam-2 cells can be abrogated by recruitment of the constitutively expressed H3K27 demethylase UTX to the SOX2 promoter through retinoid signaling, leading to expression of neuronal and other lineage genes. SOX17 has been shown to initiate human PGC specification, with its target PRDM1 suppressing mesendodermal genes. Our results are consistent with a role for SOX2 repression in normal germline development by suppressing neuroectodermal genes.
Leggere JC, Saito Y, Darnell RB, Tessier-Lavigne M, Junge HJ, Chen Z
Show All Authors

NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord

ELIFE 2016 MAY 25; 5(?):? Article e14264
RNA-binding proteins (RBPs) control multiple aspects of post-transcriptional gene regulation and function during various biological processes in the nervous system. To further reveal the functional significance of RBPs during neural development, we carried out an in vivo RNAi screen in the dorsal spinal cord interneurons, including the commissural neurons. We found that the NOVA family of RBPs play a key role in neuronal migration, axon outgrowth, and axon guidance. Interestingly, Nova mutants display similar defects as the knockout of the Dcc transmembrane receptor. We show here that Nova deficiency disrupts the alternative splicing of Dcc, and that restoring Dcc splicing in Nova knockouts is able to rescue the defects. Together, our results demonstrate that the production of DCC splice variants controlled by NOVA has a crucial function during many stages of commissural neuron development.
Hazen RM, Ausubel JH
Show All Authors

On the nature and significance of rarity in mineralogy

AMERICAN MINERALOGIST 2016 MAY-JUN; 101(5-6):1245-1251
More than half of the >5000 approved mineral species are known from five or fewer localities and thus are rare. Mineralogical rarity arises from different circumstances, but all rare mineral species conform to one or more of four criteria: (1) P-T-Xrange: minerals that form only under highly restricted conditions in pressure-temperature-composition space; (2) Planetary constraints: minerals that incorporate essential elements that are rare or that form at extreme conditions that seldom occur in Earth's near-surface environment; (3) Ephemeral phases: minerals that rapidly break down under ambient conditions; and (4) Collection biases: phases that are difficult to recognize because they lack crystal faces or are microscopic, or minerals that arise in lithological contexts that are difficult to access. Minerals that conform to criterion 1, 2, or 3 are inherently rare, whereas those matching criterion 4 may be much more common than represented by reported occurrences. Rare minerals, though playing minimal roles in Earth's bulk properties and dynamics, are nevertheless of significance for varied reasons. Uncommon minerals are key to understanding the diversity and disparity of Earth's mineralogical environments, for example in the prediction of as yet undescribed minerals. Novel minerals often point to extreme compositional regimes that can arise in Earth's shallow crust and they are thus critical to understanding Earth as a complex evolving system. Many rare minerals have unique crystal structures or reveal the crystal chemical plasticity of well-known structures, as dramatically illustrated by the minerals of boron. Uncommon minerals may have played essential roles in life's origins; conversely, many rare minerals arise only as a consequence, whether direct or indirect, of biological processes. The distribution of rare minerals may thus be a robust biosignature, while these phases individually and collectively exemplify the co-evolution of the geosphere and biosphere. Finally, mineralogical rarities, as with novelty in other natural domains, are inherently fascinating.