Publications search

Found 37684 matches. Displaying 4171-4180
Amitai A, Mesin L, Victora GD, Kardar M, Chakraborty AK
Show All Authors

A Population Dynamics Model for Clonal Diversity in a Germinal Center

FRONTIERS IN MICROBIOLOGY 2017 SEP 12; 8(?):? Article 1693
Germinal centers (GCs) are micro-domains where B cells mature to develop high affinity antibodies. Inside a GC, B cells compete for antigen and T cell help, and the successful ones continue to evolve. New experimental results suggest that, under identical conditions, a wide spectrum of clonal diversity is observed in different GCs, and high affinity B cells are not always the ones selected. We use a birth, death and mutation model to study clonal competition in a GC over time. We find that, like all evolutionary processes, diversity loss is inherently stochastic. We study two selection mechanisms, birth-limited and death limited selection. While death limited selection maintains diversity and allows for slow clonal homogenization as affinity increases, birth limited selection results in more rapid takeover of successful clones. Finally, we qualitatively compare our model to experimental observations of clonal selection in mice.
Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, Weitz CJ
Show All Authors

Macromolecular Assemblies of the Mammalian Circadian Clock

MOLECULAR CELL 2017 SEP 7; 67(5):770-782.e6
The mammalian circadian clock is built on a feedback loop in which PER and CRY proteins repress their own transcription. We found that in mouse liver nuclei all three PERs, both CRYs, and Casein Kinase-1 delta (CK1 delta) are present together in an similar to 1.9-MDa repressor assembly that quantitatively incorporates its CLOCK-BMAL1 transcription factor target. Prior to incorporation, CLOCK-BMAL1 exists in an similar to 750-kDa complex. Single-particle electron microscopy (EM) revealed nuclear PER complexes purified from mouse liver to be quasi-spherical similar to 40-nm structures. In the cytoplasm, PERs, CRYs, and CK1 delta were distributed into several complexes of similar to 0.9-1.1 MDa that appear to constitute an assembly pathway regulated by GAPVD1, a cytoplasmic trafficking factor. Single-particle EM of two purified cytoplasmic PER complexes revealed similar to 20-nmand similar to 25-nm structures, respectively, characterized by flexibly tethered globular domains. Our results define the macromolecular assemblies comprising the circadian feedback loop and provide an initial structural view of endogenous eukaryotic clock machinery.
Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, Rienzi L, Sunde A, Schmidt L, Cooke ID, Simpson JL, van der Poel S
Show All Authors

The International Glossary on Infertility and Fertility Care, 2017

HUMAN REPRODUCTION 2017 SEP; 32(9):1786-1801
STUDY QUESTION: Can a consensus and evidence-driven set of terms and definitions be generated to be used globally in order to ensure consistency when reporting on infertility issues and fertility care interventions, as well as to harmonize communication among the medical and scientific communities, policy-makers, and lay public including individuals and couples experiencing fertility problems? SUMMARY ANSWER: A set of 283 consensus-based and evidence-driven terminologies used in infertility and fertility care has been generated through an inclusive consensus-based process with multiple stakeholders. WHAT IS KNOWN ALREADY: In 2006 the International Committee for Monitoring Assisted Reproductive Technologies (ICMART) published a first glossary of 53 terms and definitions. In 2009 ICMART together with WHO published a revised version expanded to 87 terms, which defined infertility as a disease of the reproductive system, and increased standardization of fertility treatment terminology. Since 2009, limitations were identified in several areas and enhancements were suggested for the glossary, especially concerning male factor, demography, epidemiology and public health issues. STUDY DESIGN, SIZE, DURATION: Twenty-five professionals, from all parts of the world and representing their expertise in a variety of sub-specialties, were organized into five working groups: clinical definitions; outcome measurements; embryology laboratory; clinical and laboratory andrology; and epidemiology and public health. Assessment for revisions, as well as expansion on topics not covered by the previous glossary, were undertaken. A larger group of independent experts and representatives from collaborating organizations further discussed and assisted in refining all terms and definitions. PARTICIPANTS/MATERIALS, SETTING, METHODS: Members of the working groups and glossary co-ordinators interacted through electronic mail and face-to-face in international/regional conferences. Two formal meetings were held in Geneva, Switzerland, with a final consensus meeting including independent experts as well as observers and representatives of international/regional scientific and patient organizations. MAIN RESULTS AND THE ROLE OF CHANCE: A consensus-based and evidence-driven set of 283 terminologies used in infertility and fertility care was generated to harmonize communication among health professionals and scientists as well as the lay public, patients and policy makers. Definitions such as 'fertility care' and 'fertility awareness' together with terminologies used in embryology and andrology have been introduced in the glossary for the first time. Furthermore, the definition of 'infertility' has been expanded in order to cover a wider spectrum of conditions affecting the capacity of individuals and couples to reproduce. The definition of infertility remains as a disease characterized by the failure to establish a clinical pregnancy; however, it also acknowledges that the failure to become pregnant does not always result from a disease, and therefore introduces the concept of an impairment of function which can lead to a disability. Additionally, subfertility is now redundant, being replaced by the term infertility so as to standardize the definition and avoid confusion. LIMITATIONS, REASONS FOR CAUTION: All stakeholders agreed to the vast majority of terminologies included in this glossary. In cases where disagreements were not resolved, the final decision was reached after a vote, defined before the meeting as consensus if passed with 75%. Over the following months, an external expert group, which included representatives from non-governmental organizations, reviewed and provided final feedback on the glossary. WIDER IMPLICATIONS OF THE FINDINGS: Some terminologies have different definitions, depending on the area of medicine, for example demographic or clinical as well as geographic differences. These differences were taken into account and this glossary represents a multinational effort to harmonize terminologies that should be used worldwide. STUDY FUNDING/COMPETING INTERESTS: None. TRIAL REGISTRATION NUMBER: N/A
Kearney CJ, Vervoort SJ, Ramsbottom KM, Freeman AJ, Michie J, Peake J, Casanova JL, Picard C, Tangye SG, Ma CS, Johnstone RW, Randall KL, Oliaro J
Show All Authors

DOCK8 Drives Src-Dependent NK Cell Effector Function

JOURNAL OF IMMUNOLOGY 2017 SEP 15; 199(6):2118-2127
Mutations in the dedicator of cytokinesis 8 (DOCK8) gene cause an autosomal recessive form of hyper-IgE syndrome, characterized by chronic immunodeficiency with persistent microbial infection and increased incidence of malignancy. These manifestations suggest a defect in cytotoxic lymphocyte function and immune surveillance. However, how DOCK8 regulates NK cell-driven immune responses remains unclear. In this article, we demonstrate that DOCK8 regulates NK cell cytotoxicity and cytokine production in response to target cell engagement or receptor ligation. Genetic ablation of DOCK8 in human NK cells attenuated cytokine transcription and secretion through inhibition of Src family kinase activation, particularly Lck, downstream of target cell engagement or NKp30 ligation. PMA/Ionomycin treatment of DOCK8-deficient NK cells rescued cytokine production, indicating a defect proximal to receptor ligation. Importantly, NK cells from DOCK8-deficient patients had attenuated production of IFN-g and TNF-a upon NKp30 stimulation. Taken together, we reveal a novel molecular mechanism by which DOCK8 regulates NK cell-driven immunity.
Garnier S, Kronauer DJC
Show All Authors

The adaptive significance of phasic colony cycles in army ants

JOURNAL OF THEORETICAL BIOLOGY 2017 SEP 7; 428(?):43-47
Army ants are top arthropod predators in tropical forests around the world. The colonies of many army ant species undergo stereotypical behavioral and reproductive cycles, alternating between brood care and reproductive phases. In the brood care phase, colonies contain a cohort of larvae that are synchronized in their development and have to be fed. In the reproductive phase larvae are absent and oviposition takes place. Despite these colony cycles being a striking feature of army ant biology, their adaptive significance is unclear. Here we use a modeling approach to show that cyclic reproduction is favored under conditions where per capita foraging costs decrease with the number of larvae in a colony ("High Cost of Entry" scenario), while continuous reproduction is favored under conditions where per capita foraging costs increase with the number of larvae ("Resource Exhaustion" scenario). We argue that the former scenario specifically applies to army ants, because large raiding parties are required to overpower prey colonies. However, once raiding is successful it provides abundant food for a large cohort of larvae. The latter scenario, on the other hand, will apply to non-army ants, because in those species local resource depletion will force workers to forage over larger distances to feed large larval cohorts. Our model provides a quantitative framework for understanding the adaptive value of phasic colony cycles in ants. (C) 2017 Elsevier Ltd. All rights reserved.
Abrahamsson S, Blom H, Agostinho A, Jans DC, Jost A, Muller M, Nilsson L, Bernhem K, Lambert TJ, Heintzmann R, Brismar H
Show All Authors

Multifocus structured illumination microscopy for fast volumetric super-resolution imaging

BIOMEDICAL OPTICS EXPRESS 2017 SEP 1; 8(9):4135-4140
We here report for the first time the synergistic implementation of structured illumination microscopy (SIM) and multifocus microscopy (MFM). This imaging modality is designed to alleviate the problem of insufficient volumetric acquisition speed in superresolution biological imaging. SIM is a wide-field super-resolution technique that allows imaging with visible light beyond the classical diffraction limit. Employing multifocus diffractive optics we obtain simultaneous wide-field 3D imaging capability in the SIM acquisition sequence, improving volumetric acquisition speed by an order of magnitude. Imaging performance is demonstrated on biological specimens. (C) 2017 Optical Society of America
O'Gorman EJ, Zhao L, Pichler DE, Adams G, Friberg N, Rall BC, Seeney A, Zhang HY, Reuman DC, Woodward G
Show All Authors

Unexpected changes in community size structure in a natural warming experiment

NATURE CLIMATE CHANGE 2017 SEP; 7(9):659-663
Natural ecosystems typically consist of many small and few large organisms(1-4). The scaling of this negative relationship between body mass and abundance has important implications for resource partitioning and energy usage(5-7). Global warming over the next century is predicted to favour smaller organisms(8-12), producing steeper mass-abundance scaling(13) and a less efficient transfer of biomass through the food web(5). Here, we show that the opposite effect occurs in a natural warming experiment involving 13 whole-stream ecosystems within the same catchment, which span a temperature gradient of 5-25 degrees C. We introduce a mechanistic model that shows how the temperature dependence of basal resource carrying capacity can account for these previously unexpected results. If nutrient supply increases with temperature to offset the rising metabolic demand of primary producers, there will be sufficient resources to sustain larger consumers at higher trophic levels. These new data and the model that explains them highlight important exceptions to some commonly assumed 'rules' about responses to warming in natural ecosystems.
Xue BK, Leibler S
Show All Authors

Bet Hedging against Demographic Fluctuations

PHYSICAL REVIEW LETTERS 2017 SEP 8; 119(10):? Article 108103
Biological organisms have to cope with stochastic variations in both the external environment and the internal population dynamics. Theoretical studies and laboratory experiments suggest that population diversification could be an effective bet-hedging strategy for adaptation to varying environments. Here we show that bet hedging can also be effective against demographic fluctuations that pose a trade-off between growth and survival for populations even in a constant environment. A species can maximize its overall abundance in the long term by diversifying into coexisting subpopulations of both "fast-growing" and "better-surviving" individuals. Our model generalizes statistical physics models of birth-death processes to incorporate dispersal, during which new populations are founded, and can further incorporate variations of local environments. In this way, we unify different bet-hedging strategies against demographic and environmental variations as a general means of adaptation to both types of uncertainties in population growth.
Santagostino SF, Arbona RJR, Nashat MA, White JR, Monette S
Show All Authors

Pathology of Aging in NOD scid gamma Female Mice

VETERINARY PATHOLOGY 2017 SEP; 54(5):855-869
In the past decade, NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ (NSG, NOD scid gamma) mice have become a model of choice in several areas of biomedical research; however, comprehensive data on their spontaneous age-related pathology are not currently available in the literature. The prevalence of spontaneous morbidity affecting aged NSG female breeders enrolled in a parasitology study was documented with classification of neoplastic and non-neoplastic (inflammatory, metabolic, degenerative) lesions. Malignant mammary neoplasms were most commonly diagnosed, often accompanied by pulmonary metastases, while a low frequency of lymphoma and histiocytic sarcoma was documented. The major inflammatory conditions were suppurative pleuropneumonia and bronchopneumonia with abscess formation, from which Pasteurella pneumotropica was commonly isolated, followed by otitis media. Both inflammatory and degenerative lesions of the genital tract were identified, along with neoplasms such as endometrial yolk sac carcinomas and granulosa cell tumors. Novel conditions identified included renal tubular degeneration and necrosis associated with 2 concurrent types of intranuclear inclusions, focal or multifocal hyperostosis of the skull, and neuroendocrine tumors of the mesometrium. The majority of degenerative lesions that affected the genital tract, endocrine, and skeletal systems did not represent the actual underlying cause of death but rather were considered incidental findings. This study indicates that both inflammatory and neoplastic conditions contribute to morbidity and mortality in experimentally manipulated aged female NSG mice.
Tsurumi A, Zhao C, Li WX
Show All Authors

Canonical and non-canonical JAK/STAT transcriptional targets may be involved in distinct and overlapping cellular processes

BMC GENOMICS 2017 SEP 11; 18(?):? Article 718
Background: The Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway has been well-characterized as a crucial signal transduction cascade that regulates vital biological responses including development, immunity and oncogenesis. Additionally to its canonical pathway that uses the phosphorylated form of the STAT transcription factor, recently the non-canonical pathway involving heterochromatin formation by unphosphorylated STAT was recently uncovered. Considering the significant role of the JAK/STAT pathway, we used the simple Drosophila system in which the non-canonical pathway was initially characterized, to compare putative canonical versus non-canonical transcriptional targets across the genome. We analyzed microarray expression patterns of wildtype, Jak gain-and loss-of-function mutants, as well as the Stat loss-of-function mutant during embryogenesis, since the contribution of the canonical signal transduction pathway has been well-characterized in these contexts. Previous studies have also demonstrated that Jak gain-of-function and Stat mutants counter heterochromatin silencing to de-repress target genes by the non-canonical pathway. Results: Compared to canonical target genomic loci, non-canonical targets were significantly more associated with sites enriched with heterochromatin-related factors (p = 0.004). Furthermore, putative canonical and non-canonical transcriptional targets identified displayed some differences in biological pathways they regulate, as determined by Gene Ontology (GO) enrichment analyses. Canonical targets were enriched mainly with genes relevant to development and immunity, as expected, whereas the non-canonical target gene set mainly showed enrichment of genes for various metabolic responses and stress response, highlighting the possibility that some differences may exist between the two loci. Conclusions: Canonical and non-canonical JAK/STAT genes may regulate distinct and overlapping sets of genes and may perform specific overall functions in physiology. Further studies at different developmental stages, or using distinct tissues may identify additional targets and provide insight into which gene targets are unique to the canonical or non-canonical pathway.