Publications search

Found 37684 matches. Displaying 3281-3290
Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF
Show All Authors

Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism

NATURE COMMUNICATIONS 2018 OCT 8; 9(?):? Article 4147
Rifamycin antibiotics (Rifs) target bacterial RNA polymerases (RNAPs) and are widely used to treat infections including tuberculosis. The utility of these compounds is threatened by the increasing incidence of resistance (Rif(R)). As resistance mechanisms found in clinical settings may also occur in natural environments, here we postulated that bacteria could have evolved to produce rifamycin congeners active against clinically relevant resistance phenotypes. We survey soil metagenomes and identify a tailoring enzyme-rich family of gene clusters encoding biosynthesis of rifamycin congeners (kanglemycins, Kangs) with potent in vivo and in vitro activity against the most common clinically relevant Rif(R) mutations. Our structural and mechanistic analyses reveal the basis for Kang inhibition of Rif(R) RNAP. Unlike Rifs, Kangs function through a mechanism that includes interfering with 5'-initiating substrate binding. Our results suggest that examining soil microbiomes for new analogues of clinically used antibiotics may uncover metabolites capable of circumventing clinically important resistance mechanisms.
Ti SC, Alushin GM, Kapoortv TM
Show All Authors

Human beta-Tubulin Isotypes Can Regulate Microtubule Protofilament Number and Stability

DEVELOPMENTAL CELL 2018 OCT 22; 47(2):175-190.e5
Cell biological studies have shown that protofilament number, a fundamental feature of microtubules, can correlate with the expression of different tubulin isotypes. However, it is not known if tubulin isotypes directly control this basic microtubule property. Here, we report high-resolution cryo-EM reconstructions (3.5-3.65 angstrom) of purified human alpha 1B/beta 3 and alpha 1B/beta 2B microtubules and find that the beta-tubulin isotype can determine protofilament number. Comparisons of atomic models of 13- and 14-protofilament microtubules reveal how tubulin subunit plasticity, manifested in "accordion-like" distributed structural changes, can accommodate distinct lattice organizations. Furthermore, compared to alpha 1B/beta 3 microtubules, alpha 1B/beta 2B filaments are more stable to passive disassembly and against depolymerization by MCAK or chTOG, microtubule-associated proteins with distinct mechanisms of action. Mixing tubulin isotypes in different proportions results in microtubules with protofilament numbers and stabilities intermediate to those of isotypically pure filaments. Together, our findings indicate that microtubule protofilament number and stability can be controlled through beta-tubulin isotype composition.
Jacobsen JT, Mesin L, Markoulaki S, Schiepers A, Cavazzoni CB, Bousbaine D, Jaenisch R, Victora GD
Show All Authors

One-step generation of monoclonal B cell receptor mice capable of isotype switching and somatic hypermutation

JOURNAL OF EXPERIMENTAL MEDICINE 2018 OCT; 215(10):2686-2695
We developed a method for rapid generation of B cell receptor (BCR) monoclonal mice expressing prerearranged Igh and Igk chains monoallelically from the Igh locus by CRI SPR-Cas9 injection into fertilized oocytes. B cells from these mice undergo somatic hypermutation (SHM), class switch recombination (CSR), and affinity-based selection in germinal centers. This method combines the practicality of BCR transgenes with the ability to study Ig SHM, CSR, and affinity maturation.
Deplano A, Dodemont M, Denis O, Westh H, Gumpert H, Larsen AR, Larsen J, Kearns A, Pichon B, Layer F, Schulte B, Wolz C, Spiliopoulou I, Brennan G, Empel J, Hryniewicz W, de Lencastre H, Faria NA, Codita I, Sabat AJ, Friedrich AW, Deurenberg RH, Tristan A, Laurent F, Vandenesch F
Show All Authors

European external quality assessments for identification, molecular typing and characterization of Staphylococcus aureus

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY 2018 OCT; 73(10):2662-2666
Objectives: We present the results of two European external quality assessments (EQAs) conducted in 2014 and 2016 under the auspices of the Study Group on Staphylococci and Staphylococcal Infections of ESCMID. The objective was to assess the performance of participating centres in characterizing Staphylococcus aureus using their standard in-house phenotypic and genotypic protocols. Methods: A total of 11 well-characterized blindly coded S. aureus (n = 9), Staphylococcus argenteus (n = 1) and Staphylococcus capitis (n = 1) strains were distributed to participants for analysis. Species identification, MIC determination, antimicrobial susceptibility testing, antimicrobial resistance and toxin gene detection and molecular typing including spa typing, SCCmec typing and MLST were performed. Results: Thirteen laboratories from 12 European countries participated in one EQA or both EQAs. Despite considerable diversity in the methods employed, good concordance (90%-100%) with expected results was obtained. Discrepancies were observed for: (i) identification of the S. argenteus strain; (ii) phenotypic detection of low-level resistance to oxacillin in the mecC-positive strain; (iii) phenotypic detection of the inducible MLSB strain; and (iv) WGS-based detection of some resistance and toxin genes. Conclusions: Overall, good concordance (90%-100%) with expected results was observed. In some instances, the accurate detection of resistance and toxin genes from WGS data proved problematic, highlighting the need for validated and internationally agreed-on bioinformatics pipelines before such techniques are implemented routinely by microbiology laboratories. We strongly recommend all national reference laboratories and laboratories acting as referral centres to participate in such EQA initiatives.
Galea S, Vaughan RD
Show All Authors

Population Health Science as the Basic Science of Public Health: A Public Health of Consequence, October 2018

AMERICAN JOURNAL OF PUBLIC HEALTH 2018 OCT; 108(10):1288-1289
Chan CS, Laddha SV, Lewis PW, Koletsky MS, Robzyk K, Da Silva E, Torres PJ, Untch BR, Li J, Bose P, Chan TA, Klimstra DS, Allis CD, Tang LH
Show All Authors

ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup

NATURE COMMUNICATIONS 2018 OCT 12; 9(?):? Article 4158
The commonly mutated genes in pancreatic neuroendocrine tumors (PanNETs) are ATRX, DAXX, and MEN1. We genotyped 64 PanNETs and found 58% carry ATRX, DAXX, and MEN1 mutations (A-D-M mutant PanNETs) and this correlates with a worse clinical outcome than tumors carrying the wild-type alleles of all three genes (A-D-M WT PanNETs). We performed RNA sequencing and DNA-methylation analysis to reveal two distinct subgroups with one consisting entirely of A-D-M mutant PanNETs. Two genes differentiating A-D-M mutant from A-D-M WT PanNETs were high ARX and low PDX1 gene expression with PDX1 promoter hyper-methylation in the A-D-M mutant PanNETs. Moreover, A-D-M mutant PanNETs had a gene expression signature related to that of alpha-cells (FDR q-value < 0.009) of pancreatic islets including increased expression of HNF1A and its transcriptional target genes. This gene expression profile suggests that A-D-M mutant PanNETs originate from or transdifferentiate into a distinct cell type similar to alpha cells.
Zhou J, Benito-Martin A, Mighty J, Chang L, Ghoroghi S, Wu H, Wong M, Guariglia S, Baranov P, Young M, Gharbaran R, Emerson M, Mark MT, Molina H, Canto-Soler MV, Selgas HP, Redenti S
Show All Authors

Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins (vol 8, 2823, 2018)

SCIENTIFIC REPORTS 2018 OCT 22; 8(?):? Article 15801
Inoue K, Deng ZH, Chen YF, Giannopoulou E, Xu R, Gong SC, Greenblatt MB, Mangala LS, Lopez-Berestein G, Kirsch DG, Sood AK, Zhao L, Zhao BH
Show All Authors

Bone protection by inhibition of microRNA-182

NATURE COMMUNICATIONS 2018 OCT 5; 9(?):? Article 4108
Targeting microRNAs recently shows significant therapeutic promise; however, such progress is underdeveloped in treatment of skeletal diseases with osteolysis, such as osteoporosis and rheumatoid arthritis (RA). Here, we identified miR-182 as a key osteoclastogenic regulator in bone homeostasis and diseases. Myeloid-specific deletion of miR-182 protects mice against excessive osteoclastogenesis and bone resorption in disease models of ovariectomy-induced osteoporosis and inflammatory arthritis. Pharmacological treatment of these diseases with miR-182 inhibitors completely suppresses pathologic bone erosion. Mechanistically, we identify protein kinase double-stranded RNA-dependent (PKR) as a new and essential miR-182 target that is a novel inhibitor of osteoclastogenesis via regulation of the endogenous interferon (IFN)-beta-mediated autocrine feedback loop. The expression levels of miR-182, PKR, and IFN-beta are altered in RA and are significantly correlated with the osteoclastogenic capacity of RA monocytes. Our findings reveal a previously unrecognized regulatory network mediated by miR-182-PKR-IFN-beta axis in osteoclastogenesis, and highlight the therapeutic implications of miR-182 inhibition in osteoprotection.
Milham MP, Ai L, Koo B, Xu T, Amiez C, Balezeau F, Baxter MG, Blezer ELA, Brochier T, Chen AH, Croxson PL, Damatac CG, Dehaene S, Everling S, Fair DA, Fleysher L, Freiwald W, Froudist-Walsh S, Griffiths TD, Guedj C, Hadj-Bouziane F, Ben Hamed S, Harel N, Hiba B, Jarraya B, Jung B, Kastner S, Klink PC, Kwok SC, Laland KN, Leopold DA, Lindenfors P, Mars RB, Menon RS, Messinger A, Meunier M, Mok K, Morrison JH, Nacef J, Nagy J, Rios MO, Petkov CI, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader SM, Roelfsema PR, Rudko DA, Rushworth MFS, Russ BE, Sallet J, Schmid MC, Schwiedrzik CM, Seidlitz J, Sein J, Shmuel A, Sullivan EL, Ungerleider L, Thiele A, Todorov OS, Tsao D, Wang Z, Wilson CRE, Yacoub E, Ye FQ, Zarco W, Zhou YD, Margulies DS, Schroeder CE
Show All Authors

An Open Resource for Non-human Primate Imaging

NEURON 2018 OCT 10; 100(1):61-74.e2
Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.
Kutscher LM, Keil W, Shaham S
Show All Authors

RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death

DEVELOPMENTAL CELL 2018 OCT 22; 47(2):222-238.e6
Clearance of dying cells is essential for development and homeostasis. Conserved genes mediate apoptotic cell removal, but whether these genes control non-apoptotic cell removal is a major open question. Linker cell-type death (LCD) is a prevalent non-apoptotic developmental cell death process with features conserved from C. elegans to vertebrates. Using microfluidics-based long-term in vivo imaging, we show that unlike apoptotic cells, the C. elegans linker cell, which dies by LCD, is competitively phagocytosed by two neighboring cells, resulting in cell splitting. Subsequent cell elimination does not require apoptotic engulfment genes. Rather, we find that RAB-35 GTPase is a key coordinator of competitive phagocytosis onset and cell degradation. RAB-35 binds CNT-1, an ARF-6 GTPase activating protein, and removes ARF-6, a degradation inhibitor, from phagosome membranes. This facilitates phosphatidylinositol-4,5-bisphosphate removal from phagosome membranes, promoting phagolysosome maturation. Our studies suggest that RAB-35 and ARF-6 drive a conserved program eliminating cells dying by LCD.