Publications search

Found 37684 matches. Displaying 2941-2950
Fu J, Akat KM, Sun ZG, Zhang WJ, Schlondorff D, Liu ZH, Tuschl T, Lee K, He JC
Show All Authors

Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY 2019 APR; 30(4):533-545
Background Recent single-cell RNA sequencing (scRNA-seq) analyses have offered much insight into cell-specific gene expression profiles in normal kidneys. However, in diseased kidneys, understanding of changes in specific cells, particularly glomerular cells, remains limited. Methods To elucidate the glomerular cell-specific gene expression changes in diabetic kidney disease, we performed scRNA-seq analysis of isolated glomerular cells from streptozotocin-induced diabetic endothelial nitric oxide synthase (eNOS)-deficient (eNOS(-/-)) mice and control eNOS(-/-) mice. Results We identified five distinct cell populations, including glomerular endothelial cells, mesangial cells, podocytes, immune cells, and tubular cells. Using scRNA-seq analysis, we confirmed the expression of glomerular cell-specific markers and also identified several new potential markers of glomerular cells. The number of immune cells was significantly higher in diabetic glomeruli compared with control glomeruli, and further cluster analysis showed that these immune cells were predominantly macrophages. Analysis of differential gene expression in endothelial and mesangial cells of diabetic and control mice showed dynamic changes in the pattern of expressed genes, many of which are known to be involved in diabetic kidney disease. Moreover, gene expression analysis showed variable responses of individual cells to diabetic injury. Conclusions Our findings demonstrate the ability of scRNA-seq analysis in isolated glomerular cells from diabetic and control mice to reveal dynamic changes in gene expression in diabetic kidneys, with variable responses of individual cells. Such changes, which might not be apparent in bulk transcriptomic analysis of glomerular cells, may help identify important pathophysiologic factors contributing to the progression of diabetic kidney disease.
He H, Guttman-Yassky E
Show All Authors

JAK Inhibitors for Atopic Dermatitis: An Update (vol 20, pg 181, 2019)

AMERICAN JOURNAL OF CLINICAL DERMATOLOGY 2019 APR; 20(2):193-193
Beziat V, Jouanguy E, Puel A
Show All Authors

Dominant negative CARD11 mutations: Beyond atopy

JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY 2019 APR; 143(4):1345-1347
Sarker M, Lee HT, Mei L, Krokhotin A, de los Reyes SE, Yen L, Costantini LM, Griffith J, Dokholyan NV, Alushin GM, Campbell SL
Show All Authors

Cardiomyopathy Mutations in Metavinculin Disrupt Regulation of Vinculin-Induced F-Actin Assemblies

JOURNAL OF MOLECULAR BIOLOGY 2019 APR 5; 431(8):1604-1618
Debilitating heart conditions, notably dilated and hypertrophic cardiomyopathies (CMs), are associated with point mutations in metavinculin, a larger isoform of the essential cytoskeletal protein vinculin. Metavinculin is co-expressed with vinculin at sub-stoichiometric ratios in cardiac tissues. CM mutations in the metavinculin tail domain (MVt) occur within the extra 68-residue insert that differentiates it from the vinculin tail domain (Vt). Vt binds actin filaments (F-actin) and promotes vinculin dimerization to bundle F-actin into thick fibers. While MVt binds to F-actin in a similar manner to Vt, MVt is incapable of F-actin bundling and inhibits Vt-mediated F-actin bundling. We performed F-actin co-sedimentation and negative-stain EM experiments to dissect the coordinated roles of metavinculin and vinculin in actin fiber assembly and the effects of three known metavinculin CM mutations. These CM mutants were found to weakly induce the formation of disordered F-actin assemblies. Notably, they fail to inhibit Vt-mediated F-actin bundling and instead promote formation of large assemblies embedded with linear bundles. Computational models of MVt bound to F-actin suggest that MVt undergoes a conformational change licensing the formation of a protruding sub-domain incorporating the insert, which sterically prevents dimerization and bundling of F-actin by Vt. Sub-domain formation is destabilized by CM mutations, disrupting this inhibitory mechanism. These findings provide new mechanistic insights into the ability of metavinculin to tune actin organization by vinculin and suggest that dysregulation of this process by CM mutants could underlie their malfunction in disease. (C) 2019 Elsevier Ltd. All rights reserved.
Pellegrino S, Meyer M, Konst ZA, Holm M, Voora VK, Kashinskaya D, Zanette C, Mobley DL, Yusupova G, Vanderwal CD, Blanchard SC, Yusupov M
Show All Authors

Understanding the role of intermolecular interactions between lissoclimides and the eukaryotic ribosome

NUCLEIC ACIDS RESEARCH 2019 APR 8; 47(6):3223-3232
Natural products that target the eukaryotic ribosome are promising therapeutics to treat a variety of cancers. It is therefore essential to determine their molecular mechanism of action to fully understand their mode of interaction with the target and to inform the development of new synthetic compounds with improved potency and reduced cytotoxicity. Toward this goal, we have previously established a short synthesis pathway that grants access to multiple congeners of the lissoclimide family. Here we present the X-ray co-crystal structure at 3.1 angstrom resolution of C45, a potent congener with two A-ring chlorine-bearing stereogenic centers with unnatural' configurations, with the yeast 80S ribosome, intermolecular interaction energies of the C45/ribosome complex, and single-molecule FRET data quantifying the impact of C45 on both human and yeast ribosomes. Together, these data provide new insights into the role of unusual non-covalent halogen bonding interactions involved in the binding of this synthetic compound to the 80S ribosome.
Indiani C, Sauve K, Raz A, Abdelhady W, Xiong YQ, Cassino C, Elayer AS, Schuch R
Show All Authors

The Antistaphylococcal Lysin, CF-301, Activates Key Host Factors in Human Blood To Potentiate Methicillin-Resistant Staphylococcus aureus Bacteriolysis

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 2019 APR; 63(4):? Article e02291-18
Bacteriophage-derived lysins are cell-wall-hydrolytic enzymes that represent a potential new class of antibacterial therapeutics in development to address burgeoning antimicrobial resistance. CF-301, the lead compound in this class, is in clinical development as an adjunctive treatment to potentially improve clinical cure rates of Staphylococcus aureus bacteremia and infective endocarditis (IE) when used in addition to antibiotics. In order to profile the activity of CF-301 in a clinically relevant milieu, we assessed its in vitro activity in human blood versus in a conventional testing medium (cation-adjusted Mueller-Hinton broth [caMHB]). CF-301 exhibited substantially greater potency (32 to >= 100-fold) in human blood versus caMHB in three standard microbiologic testing formats (e.g., broth dilution MICs, checkerboard synergy, and time-kill assays). We demonstrated that CF-301 acted synergistically with two key human blood factors, human serum lysozyme (HuLYZ) and human serum albumin (HSA), which normally have no nascent antistaphylococcal activity, against a prototypic methicillin-resistant S. aureus (MRSA) strain (MW2). Similar in vitro enhancement of CF-301 activity was also observed in rabbit, horse, and dog (but not rat or mouse) blood. Two well-established MRSA IE models in rabbit and rat were used to validate these findings in vivo by demonstrating comparable synergistic efficacy with standard-of-care anti-MRSA antibiotics at >= 100-fold lower lysin doses in the rabbit than in the rat model. The unique properties of CF-301 that enable bactericidal potentiation of antimicrobial activity via activation of "latent" host factors in human blood may have important therapeutic implications for durable improvements in clinical outcomes of serious antibiotic-resistant staphylococcal infections.
Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Akdemir ZHC, Buyske S, Pehlivan D, Carvalho CMB, Baxter S, Sobreira N, Liu PF, Wu N, Rosenfeld JA, Kumar S, Avramopoulos D, White JJ, Doheny KF, Witmer PD, Boehm C, Sutton VR, Muzny DM, Boerwinkle E, Gunel M, Nickerson DA, Mane S, MacArthur DG, Gibbs RA, Hamosh A, Lifton RP, Matise TC, Rehm HL, Gerstein M, Bamshad MJ, Valle D, Lupski JR
Show All Authors

Insights into genetics, human biology and disease gleaned from family based genomic studies

GENETICS IN MEDICINE 2019 APR; 21(4):798-812
Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the similar to 20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.
He H, Guttman-Yassky E
Show All Authors

JAK Inhibitors for Atopic Dermatitis: An Update

AMERICAN JOURNAL OF CLINICAL DERMATOLOGY 2019 APR; 20(2):181-192
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases. AD is driven by barrier dysfunction and abnormal immune activation of Thelper (Th) 2, Th22, and varying degrees of Th1 and Th17 among various subtypes. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and spleen tyrosine kinase (SYK) pathways are involved in signaling of several AD-related cytokines, such as IFN-gamma, IL-4, IL-13, IL-31, IL-33, IL-23, IL-22, and IL-17, mediating downstream inflammation and barrier alterations. While AD is primarily Th2-driven, the clinical and molecular heterogeneity of AD endotypes highlights the unmet need for effective therapeutic options that target more than one immune axis and are safe for long-term use. The JAK inhibitors, which target different combinations of kinases, have overlapping but distinct mechanisms of action and safety profiles. Several topical and oral JAK inhibitors have been shown to decrease AD severity and symptoms. A review of the JAK and SYK inhibitors that are currently undergoing evaluation for efficacy and safety in the treatment of AD summarizes available data on a promising area of therapeutics and further elucidates the complex molecular interactions that drive AD.
Luna JM, Saeed M, Rice CM
Show All Authors

Taming a beast: lessons from the domestication of hepatitis C virus

CURRENT OPINION IN VIROLOGY 2019 APR; 35(?):27-34
"What I cannot create, I do not understand." Richard Feynman may have championed reasoning from first principles in his famous blackboard missive, but he could just as well have been referring to the plight of a molecular virologist. What cannot be grown in a controlled laboratory setting, we cannot fully understand. The story of the laboratory domestication of hepatitis C virus (HCV) is now a classic example of virologists applying all manner of inventive skill to create cell-based models of infection in order to clarify prospective drug targets. In this review, we highlight key successes and failures that were instructive in achieving cell-based models for HCV studies and drug development. We also emphasize the lessons learned from the 40 year saga that may be applicable to viruses yet unknown and uncultured.
Capoor MN, Lochman J, McDowell A, Schmitz JE, Solansky M, Zapletalova M, Alamin TF, Coscia MF, Garfin SR, Jancalek R, Ruzicka F, Shamie AN, Smrcka M, Wang JC, Birkenmaier C, Slaby O
Show All Authors

Intervertebral disc penetration by antibiotics used prophylactically in spinal surgery: implications for the current standards and treatment of disc infections

EUROPEAN SPINE JOURNAL 2019 APR; 28(4):783-791
PurposeThe presence of Propionibacterium acnes in a substantial component of resected disc specimens obtained from patients undergoing discectomy or microdiscectomy has led to the suggestion that this prominent human skin and oral commensal may exacerbate the pathology of degenerative disc disease. This hypothesis, therefore, raises the exciting possibility that antibiotics could play an important role in treating this debilitating condition. To date, however, little information about antibiotic penetration into the intervertebral disc is available. MethodsIntervertebral disc tissue obtained from 54 microdiscectomy patients given prophylactic cefazolin (n=25), clindamycin (n=17) or vancomycin (n=12) was assayed by high-performance liquid chromatography, with cefaclor as an internal standard, to determine the concentration of antibiotic penetrating into the disc tissue.ResultsIntervertebral disc tissues from patients receiving the positively charged antibiotic clindamycin contained a significantly greater percentage of the antibacterial dose than the tissue from patients receiving negatively charged cefazolin (P<0.0001) and vancomycin, which has a slight positive charge (P<0.0001).ConclusionPositively charged antibiotics appear more appropriate for future studies investigating potential options for the treatment of low-virulence disc infections. [GRAPHICS]