Publications search

Found 37684 matches. Displaying 2401-2410
Lin Q, Manley J, Helmreich M, Schlumm F, Li JM, Robson DN, Engert F, Schier A, Nobauer T, Vaziri A
Show All Authors

Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level

CELL 2020 FEB 6; 180(3):536-551.e17
Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.
Davies K, Marraffini L
Show All Authors

Major Insights into Microbiology: An Interview with Luciano Marraffini

CRISPR JOURNAL 2020 FEB; 3(1):5-9
Matsumura Y, Li N, Alwaseem H, Pagovich OE, Crystal RG, Greenblatt MB, Stiles KM
Show All Authors

Systemic Adeno-Associated Virus-Mediated Gene Therapy Prevents the Multiorgan Disorders Associated with Aldehyde Dehydrogenase 2 Deficiency and Chronic Ethanol Ingestion

HUMAN GENE THERAPY 2020 FEB 1; 31(3-4):163-182
Aldehyde dehydrogenase type 2 (ALDH2), a key enzyme in ethanol metabolism, processes toxic acetaldehyde to nontoxic acetate. ALDH2 deficiency affects 8% of the world population and 35-45% of East Asians. The ALDH2*2 allele common genetic variant has a glutamic acid-to-lysine substitution at position 487 (E487K) that reduces the oxidizing ability of the enzyme resulting in systemic accumulation of acetaldehyde with ethanol ingestion. With chronic ethanol ingestion, mutations in ALDH2 are associated with a variety of hematological, neurological, and dermatological abnormalities, and an increased risk for esophageal cancer and osteoporosis. Based on our prior studies demonstrating that a one-time administration of an adeno-associated virus (AAV) serotype rh.10 gene transfer vector expressing the human ALDH2 cDNA (AAVrh.10hALDH2) prevents the acute effects of ethanol administration (the "Asian flush syndrome"), we hypothesized that AAVrh.10hALDH2 would also prevent the chronic disorders associated with ALDH2 deficiency and chronic ethanol ingestion. To assess this hypothesis, AAVrh.10hALDH2 (10(11) genome copies) was administered intravenously to two models of ALDH2 deficiency, Aldh2 knockout homozygous (Aldh2(-/-)) and knockin homozygous (Aldh2(E487K+/+)) mice (n = 10 per group). Four weeks after vector administration, mice were given drinking water with 10-15% ethanol for 12 weeks. Strikingly, compared with nonethanol drinking littermates, AAVrh.10hALDH2 administration prevented chronic ethanol-induced serum acetaldehyde accumulation and elevated liver malondialdehyde levels, loss of body weight, reduced hemoglobin levels, reduced performance in locomotor activity tests, accumulation of esophageal DNA damage and DNA adducts, and development of osteopenia. AAVrh.10hALDH2 should be considered as a preventative therapy for the increased risk of chronic disorders associated with ALDH2 deficiency and chronic alcohol exposure.
Weber RA, Yen FS, Nicholson SPV, Alwaseem H, Bayraktar EC, Alam M, Timson RC, La K, Abu-Remaileh M, Molina H, Birsoy K
Show All Authors

Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation

MOLECULAR CELL 2020 FEB 6; 77(3):645-655.e7
The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.
Wang R, Qi XF, Schmiege P, Coutavas E, Li XC
Show All Authors

Marked structural rearrangement of mannose 6-phosphate/IGF2 receptor at different pH environments

SCIENCE ADVANCES 2020 FEB; 6(7):? Article eaaz1466
Many cell surface receptors internalize their ligands and deliver them to endosomes, where the acidic pH causes the ligand to dissociate. The liberated receptor returns to the cell surface in a process called receptor cycling. The structural basis for pH-dependent ligand dissociation is not well understood. In some receptors, the ligand binding domain is composed of multiple repeated sequences. The insulin-like growth factor 2 receptor (IGF2R) contains 15 strand-rich repeat domains. The overall structure and the mechanism by which IGF2R binds IGF2 and releases it are unknown. We used cryo-EM to determine the structures of the IGF2R at pH 7.4 with IGF2 bound and at pH 4.5 in the ligand-dissociated state.The results reveal different arrangements of the receptor in different pH environments mediated by changes in the interactions between the repeated sequences. These results have implications for our understanding of ligand release from receptors in endocytic compartments.
Laughney AM, Hu J, Campbell NR, Bakhoum SF, Setty M, Lavallee VP, Xie YB, Masilionis I, Carr AJ, Kottapalli S, Allaj V, Mattar M, Rekhtman N, Xavier JB, Mazutisz L, Poirier JT, Rudin CM, Pe'er D, Massague J
Show All Authors

Regenerative lineages and immune-mediated pruning in lung cancer metastasis

NATURE MEDICINE 2020 FEB; 26(2):259-269
Developmental processes underlying normal tissue regeneration have been implicated in cancer, but the degree of their enactment during tumor progression and under the selective pressures of immune surveillance, remain unknown. Here we show that human primary lung adenocarcinomas are characterized by the emergence of regenerative cell types, typically seen in response to lung injury, and by striking infidelity among transcription factors specifying most alveolar and bronchial epithelial lineages. In contrast, metastases are enriched for key endoderm and lung-specifying transcription factors, SOX2 and SOX9, and recapitulate more primitive transcriptional programs spanning stem-like to regenerative pulmonary epithelial progenitor states. This developmental continuum mirrors the progressive stages of spontaneous outbreak from metastatic dormancy in a mouse model and exhibits SOX9-dependent resistance to natural killer cells. Loss of developmental stage-specific constraint in macrometastases triggered by natural killer cell depletion suggests a dynamic interplay between developmental plasticity and immune-mediated pruning during metastasis. Single-cell analysis of lung cancer progression uncovers developmental and regenerative programs co-opted by cancer cells and immune-mediated pruning during metastatic outbreak
Matthews BJ, Vosshall LB
Show All Authors

How to turn an organism into a model organism in 10 'easy' steps

JOURNAL OF EXPERIMENTAL BIOLOGY 2020 FEB; 223(?):? Article jeb218198
Many of themajor biological discoveries of the 20th century were made using just six species: Escherichia coli bacteria, Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, Caenorhabditis elegans nematodes, Drosophila melanogaster flies and Musmusculus mice. Our molecular understanding of the cell division cycle, embryonic development, biological clocks and metabolism were all obtained through genetic analysis using these species. Yet the 'big 6' did not start out as genetic model organisms (hereafter 'model organisms'), so how did they mature into such powerful systems? First, these model organisms are abundant human commensals: they are the bacteria in our gut, the yeast in our beer and bread, the nematodes in our compost pile, the flies in our kitchen and the mice in our walls. Because of this, they are cheaply, easily and rapidly bred in the laboratory and in addition were amenable to genetic analysis. How and why should we add additional species to this roster? We argue that specialist species will reveal new secrets in important areas of biology and that with modern technological innovations like next-generation sequencing and CRISPR-Cas9 genome editing, the time is ripe to move beyond the big 6. In this review, we chart a 10-step path to this goal, using our own experience with the Aedes aegypti mosquito, which we built into a model organism for neurobiology in one decade. Insights into the biology of this deadly disease vector require that we work with the mosquito itself rather than modeling its biology in another species.
Sparks S, Hayama R, Rout MP, Cowburn D
Show All Authors

Analysis of Multivalent IDP Interactions: Stoichiometry, Affinity, and Local Concentration Effect Measurements

INTRINSICALLY DISORDERED PROTEINS: Methods and Protocols 2020; 2141(?):463-475
Nuclear magnetic resonance (NMR) titration and isothermal titration calorimetry can be combined to provide an assessment of how multivalent intrinsically disordered protein (IDP) interactions can involve enthalpy-entropy balance. Here, we describe the underlying technical details and additional methods, such as dynamic light scattering analysis, needed to assess these reactions. We apply this to a central interaction involving the disordered regions of phe-gly nucleoporins (FG-Nups) that contain multiple phenylalanine-glycine repeats which are of particular interest, as their interactions with nuclear transport factors (NTRs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex (NPC). These analyses revealed that a combination of low per-FG motif affinity and the enthalpy-entropy balance prevents high-avidity interaction between FG-Nups and NTRs while the large number of FG motifs promotes frequent FG-NTR contacts, resulting in enhanced selectivity.
Ghosh S, Sheppard LW, Holder MT, Loecke TD, Reid PC, Bever JD, Reuman DC
Show All Authors

Copulas and their potential for ecology

TROPICAL ECOSYSTEMS IN THE 21ST CENTURY 2020; 62(?):409-468
All branches of ecology study relationships among and between environmental and biological variables. However, standard approaches to studying such relationships, based on correlation and regression, provide only some of the complex information contained in the relationships. Other statistical approaches exist that provide a complete description of relationships between variables, based on the concept of the copula; they are applied in finance, neuroscience and elsewhere, but rarely in ecology. We explore the concepts that underpin copulas and the potential for those concepts to improve our understanding of ecology. We find that informative copula structure in dependencies between variables is common across all the environmental, species-trait, phenological, population, community, and ecosystem functioning datasets we considered. Many datasets exhibited asymmetric tail associations, whereby two variables were more strongly related in their left compared to right tails, or vice versa. We describe mechanisms by which observed copula structure and tail associations can arise in ecological data, including a Moran-like effect whereby dependence structures are inherited from environmental variables; and asymmetric or nonlinear influences of environments on ecological variables, such as under Liebig's law of the minimum. We also describe consequences of copula structure for ecological phenomena, including impacts on extinction risk, Taylor's law, and the temporal stability of ecosystem services. By documenting the importance of a complete description of dependence between variables, advancing conceptual frameworks, and demonstrating a powerful approach, we encourage widespread use of copulas in ecology, which we believe can benefit the discipline.
Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O'Donnell ME, van Oijen AM
Show All Authors

Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication

MOLECULAR CELL 2020 JAN 2; 77(1):17-25.e5
Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol alpha-primase DNA polymerase activity in replication and show that Pol alpha-primase and the lagging-strand Pol delta can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.