Publications search

Found 37684 matches. Displaying 2131-2140
Grasset EK, Chorny A, Casas-Recasens S, Gutzeit C, Bongers G, Thomsen I, Chen L, He Z, Matthews DB, Oropallo MA, Veeramreddy P, Uzzan M, Mortha A, Carrillo J, Reis BS, Ramanujam M, Sintes J, Magri G, Maglione PJ, Cunningham-Rundles C, Bram RJ, Faith J, Mehandru S, Pabst O, Cerutti A
Show All Authors

Gut T cell-independent IgA responses to commensal bacteria require engagement of the TACI receptor on B cells

SCIENCE IMMUNOLOGY 2020 JUL; 5(49):? Article eaat7117
The gut mounts secretory immunoglobulin A ( SIgA) responses to commensal bacteria through nonredundant T cell-dependent (TD) and T cell-independent (TI) pathways that promote the establishment of mutualistic host-microbiota interactions. SIgAs from the TD pathway target penetrant bacteria, and their induction requires engagement of CD40 on B cells by CD40 ligand on T follicular helper cells. In contrast, SIgAs from the TI pathway bind a larger spectrum of bacteria, but the mechanism underpinning their production remains elusive. Here, we show that the intestinal TI pathway required CD40-independent B cell-activating signals from TACI, a receptor for the innate CD40 ligand-like factors BAFF and APRIL. TACI-induced SIgA responses targeted a fraction of the gut microbiota without shaping its overall composition. Of note, TACI was dispensable for TD induction of IgA in gut-associated lymphoid organs. Thus, BAFF/APRIL signals acting on TACI orchestrate commensal bacteria-specific SIgA responses through an intestinal TI program.
Ostendorf BN, Bilanovic J, Adaku N, Tafreshian KN, Tavora B, Vaughan RD, Tavazoie SF
Show All Authors

Common germline variants of the human APOE gene modulate melanoma progression and survival

NATURE MEDICINE 2020 JUL; 26(7):1048-1053
Heritable APOE variants in patients with melanoma influence anti-tumor immunity and modulate metastatic progression and response to immunotherapy. Common germline variants of the APOE gene are major risk modifiers of neurodegenerative and atherosclerotic diseases(1-3), but their effect on cancer outcome is poorly defined. Here we report that, in a reversal of their effect on Alzheimer's disease, the APOE4 and APOE2 variants confer favorable and poor outcomes in melanoma, respectively. Mice expressing the human APOE4 allele exhibited reduced melanoma progression and metastasis relative to APOE2 mice. APOE4 mice exhibited enhanced anti-tumor immune activation relative to APOE2 mice, and T cell depletion experiments showed that the effect of APOE genotype on melanoma progression was mediated by altered anti-tumor immunity. Consistently, patients with melanoma carrying the APOE4 variant experienced improved survival in comparison to carriers of APOE2. Notably, APOE4 mice also showed improved outcomes under PD1 immune checkpoint blockade relative to APOE2 mice, and patients carrying APOE4 experienced improved anti-PD1 immunotherapy survival after progression on frontline regimens. Finally, enhancing APOE expression via pharmacologic activation of liver X receptors, previously shown to boost anti-tumor immunity(4), exhibited therapeutic efficacy in APOE4 mice but not in APOE2 mice. These findings demonstrate that pre-existing hereditary genetics can impact progression and survival outcomes of a future malignancy and warrant prospective investigation of APOE genotype as a biomarker for melanoma outcome and therapeutic response.
Buitrago L, Zafar H, Zhang YX, Li JH, Walz T, Coller BS
Show All Authors

Dominant role of alpha IIb beta 3 in platelet interactions with cross-linked fibrin fragment D-dimer

BLOOD ADVANCES 2020 JUL 14; 4(13):2939-2949
Although much is known about the interaction of fibrinogen with alpha IIb beta 3, much less is known about the interaction of platelets with cross-linked fibrin. Fibrinogen residue Lys406 plays a vital role in the interaction of fibrinogen with alpha IIb beta 3, but because it participates in fibrin cross-linking, it is not available for interacting with alpha IIb beta 3. We studied the adhesion of platelets and HEK cells expressing normal and constitutively active alpha IIb beta 3 to both immobilized fibrinogen and D-dimer, a proteolytic fragment of cross-linked fibrin, as well as platelet-mediated clot retraction. Nonactivated platelets and HEK cells expressing normal alpha IIb beta 3 adhered to fibrinogen but not D-dimer, whereas activated platelets as well as HEK cells expressing activated alpha IIb beta 3 both bound to D-dimer. Small-molecule antagonists of the alpha IIb beta 3 RGD (Arg-Gly-Asp) binding pocket inhibited adhesion to D-dimer, and an Asp119Ala mutation that disrupts the beta 3 metal ion-dependent adhesion site inhibited alpha IIb beta 3-mediated adhesion to D-dimer. D-dimer and a polyclonal antibody against D-dimer inhibited clot retraction. The monoclonal antibody (mAb) 10E5, directed at alpha IIb and a potent inhibitor of platelet interactions with fibrinogen, did not inhibit the interaction of activated platelets with D-dimer or dot retraction, whereas the mAb 7E3, directed at beta 3, inhibited both phenomena. We conclude that activated, but not nonactivated, alpha IIb beta 3 mediates interactions between platelets and D-dimer, and by extrapolation, to cross-linked fibrin. Although the interaction of alpha IIb beta 3 with D-dimer differs from that with fibrinogen, it probably involves contributions from regions on beta 3 that are close to, or that are affected by, changes in the RGD binding pocket.
Nemieboka B, Sharma SK, Rao TD, Edwards KJ, Yan S, Wang P, Ragupathi A, Piersigilli A, Spriggs DR, Lewis JS
Show All Authors

Radiopharmacologic screening of antibodies to the unshed ectodomain of MUC16 in ovarian cancer identifies a lead candidate for clinical translation

NUCLEAR MEDICINE AND BIOLOGY 2020 JUL-AUG; 86-87(?):9-19
Introduction: Despite its limitations, CA125 remains the most widely used biomarker for the diagnosis and treatment monitoring of ovarian cancer. Targeting the unshed portion of serum biomarkers such as CA125/MUC16 may afford more specific imaging and targeting of MUC16-positive tumors in High Grade Serous Ovarian Cancer (HGSOC) patients. Methods: Six monoclonal antibodies raised against the 58 amino acid sequence between the extracellular cleavage site and the transmembrane region of MUC16 were radiolabeled with [Zr-89]Zr4+. The radioimmunoconjugates were evaluated in vitro for molar activities, target binding affinity, cellular internalization and serum stability. In vivo characterization was performed via longitudinal positron emission tomography (PET) imaging and ex vivo biodistribution studies in mice bearing subcutaneous xenografts of SKOV3 cells transfected with the proximal 114 amino-acids of MUC16 carboxy-terminus (SKOV3+). Results: In vitro screening identified 9C9 and 4H11 as the lead antibody candidates based on their comparable binding affinities, serum stability and cellular internalization profiles. Despite an identical molecular footprint for binding to MUC16, [Zr-89]Zr-DFO-4H11 yielded a more favorable in vivo radiopharmacologic profile. Furthermore, a humanized variant of 4H11 capable of binding MUC16 in vitro also yielded excellent in vivo profile in subcutaneous xenograft models of SKOV3+, OVCAR3 tumors and a patient-derived xenograft model representative of HGSOC. Conclusion: Radiopharmacologic screening of antibodies early during their development can provide crucial information pertinent to the in vitro characterization and in vivo pharrnacokinetics. The favorable in vivo profile demonstrated by humanized 4H11 combined with the use of its murine predecessor for immunohistochemical staining of biopsied tumor tissues from HGSOC patients makes a unique pair of antibodies that is poised for clinical translation. (C) 2020 Elsevier Inc. All rights reserved.
Islam MS, Hu Y, Mizan MFR, Yan T, Nime I, Zhou Y, Li JQ
Show All Authors

Characterization ofSalmonellaPhage LPST153 That Effectively Targets Most PrevalentSalmonellaSerovars

MICROORGANISMS 2020 JUL; 8(7):? Article 1089
Foodborne diseases represent a major risk to public health worldwide. In this study, LPST153, a novelSalmonellalytic phage with halo (indicative of potential depolymerase activity) was isolated by employingSalmonella entericaserovar Typhimurium ATCC 13311 as the host and had excellent lytic potential againstSalmonella. LPST153 is effectively able to lyse most prevalent tested serotypes ofSalmonella, includingS.Typhimurium,S.Enteritidis,S.Pullorum andS.Gallinarum. Morphological analysis revealed that phage LPST153 belongs toPodoviridaefamily andCaudoviralesorder and could completely prevent host bacterial growth within 9 h at multiplicity of infection (MOI) of 0.1, 1, 10 and 100. LPST153 had a latent period of 10 min and a burst size of 113 +/- 8 PFU/cell. Characterization of the phage LPST153 revealed that it would be active and stable in some harsh environments or in different conditions of food processing and storage. After genome sequencing and phylogenetic analysis, it is confirmed that LPST153 is a new member of theTeseptimavirusgenus ofAutographivirinaesubfamily. Further application experiments showed that this phage has potential in controllingSalmonellain milk and sausage. LPST153 was also able to inhibit the formation of biofilms and it had the ability to reduce and kill bacteria from inside, including existing biofilms. Therefore, the phage LPST153 could be used as a potential antibacterial agent forSalmonellacontrol in the food industry.
Ray TA, Cochran K, Kozlowski C, Wang JJ, Alexander G, Cady MA, Spencer WJ, Ruzycki PA, Clark BS, Laeremans A, He MX, Wang XM, Park E, Hao Y, Iannaccone A, Hu G, Fedrigo O, Skiba NP, Arshavsky VY, Kay JN
Show All Authors

Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease

NATURE COMMUNICATIONS 2020 JUL 3; 11(1):3328
Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1, was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease. Here the authors present an approach that can reveal the full complement of mRNA isoforms encoded by individual genes, and they identify a major isoform of the retinal degeneration gene CRB1 which functions at the cell-cell junctions of the outer limiting membrane to promote photoreceptor survival.
Tanmoy D
Show All Authors

When the jokes aren't funny

SCIENCE 2020 JUL 17; 369(6501):342-342
Onat OE, Kars ME, Gul S, Bilguvar K, Wu YM, Ozhan A, Aydin C, Basak AN, Trusso MA, Goracci A, Fallerini C, Renieri A, Casanova JL, Itan Y, Atbasoglu CE, Saka MC, Kavakli IH, Ozcelik T
Show All Authors

Human CRY1 variants associate with attention deficit/hyperactivity disorder

JOURNAL OF CLINICAL INVESTIGATION 2020 JUL 1; 130(7):3885-3900
Attention deficit/hyperactivity disorder (ADHD) is a common and heritable phenotype frequently accompanied by insomnia, anxiety, and depression. Here, using a reverse phenotyping approach, we report heterozygous coding variations in the core circadian clock gene cryptochrome 1 in 15 unrelated multigenerational families with combined ADHD and insomnia. The variants led to functional alterations in the circadian molecular rhythms, providing a mechanistic link to the behavioral symptoms. One variant, CRY1 Delta 11 c.1657+3A>C, is present in approximately 1% of Europeans, therefore standing out as a diagnostic and therapeutic marker. We showed by exome sequencing in an independent cohort of patients with combined ADHD and insomnia that 8 of 62 patients and 0 of 369 controls carried CRY1 Delta 11. Also, we identified a variant, CRY116 c.825+1G>A, that shows reduced affinity for BMAL1/CLOCK and causes an arrhythmic phenotype. Genotype-phenotype correlation analysis revealed that this variant segregated with ADHD and delayed sleep phase disorder (DSPD) in the affected family. Finally, we found in a phenome-wide association study involving 9438 unrelated adult Europeans that CRY1 Delta 11 was associated with major depressive disorder, insomnia, and anxiety. These results defined a distinctive group of circadian psychiatric phenotypes that we propose to designate as "circiatric" disorders.
Peng JH, Yuan C, Hua XF, Zhang ZY
Show All Authors

Molecular mechanism of histone variant H2A.B on stability and assembly of nucleosome and chromatin structures

EPIGENETICS & CHROMATIN 2020 JUL 14; 13(1):? Article 28
Background H2A.B, the most divergent histone variant of H2A, can significantly modulate nucleosome and chromatin structures. However, the related structural details and the underlying mechanism remain elusive to date. In this work, we built atomic models of the H2A.B-containing nucleosome core particle (NCP), chromatosome, and chromatin fiber. Multiscale modeling including all-atom molecular dynamics and coarse-grained simulations were then carried out for these systems. Results It is found that sequence differences at the C-terminal tail, the docking domain, and the L2 loop, between H2A.B and H2A are directly responsible for the DNA unwrapping in the H2A.B NCP, whereas the N-terminus of H2A.B may somewhat compensate for the aforementioned unwrapping effect. The assembly of the H2A.B NCP is more difficult than that of the H2A NCP. H2A.B may also modulate the interactions of H1 with both the NCP and the linker DNA and could further affect the higher-order structure of the chromatin fiber. Conclusions The results agree with the experimental results and may shed new light on the biological function of H2A.B. Multiscale modeling may be a valuable tool for investigating structure and dynamics of the nucleosome and the chromatin induced by various histone variants.
Ashirova E, Contoreggi NH, Johnson MA, Al-Khayat FJ, Calcano GA, Rubin BR, O'Cinneide EM, Zhang Y, Zhou Y, Gregoire L, McEwen BS, Kreek MJ, Milner TA
Show All Authors

Oxycodone injections not paired with conditioned place preference have little effect on the hippocampal opioid system in female and male rats

SYNAPSE 2020 JUL 12; ?(?):? Article e22182
Oxycodone (Oxy) conditioned place preference (CPP) in Sprague Dawley rats results in sex-specific alterations in hippocampal opioid circuits in a manner that facilitates opioid-associative learning processes, particularly in females. Here, we examined if Oxy (3 mg/kg, I.P.) or saline (Sal) injections not paired with behavioral testing similarly affect the hippocampal opioid system. Sal-injected females compared to Sal-injected males had: (1) higher densities of cytoplasmic delta opioid receptors (DOR) in GABAergic hilar dendrites suggesting higher baseline reserve DOR pools and (2) elevated phosphorylated DOR levels, but lower phosphorylated mu opioid receptor (MOR) levels in CA3a suggesting that the baseline pools of activated opioid receptors vary in females and males. In contrast to CPP studies, Oxy-injections in the absence of behavioral tests resulted in few changes in the hippocampal opioid system in either females or males. Specifically, Oxy-injected males compared to Sal-injected males had fewer DORs near the plasma membrane of CA3 pyramidal cell dendrites and in CA3 dendritic spines contacted by mossy fibers, and lower pMOR levels in CA3a. Oxy-injected females compared to Sal-injected females had higher total DORs in GABAergic dendrites and lower total MORs in parvalbumin-containing dendrites. Thus, unlike Oxy CPP, Oxy-injections redistributed opioid receptors in hippocampal neurons in a manner that would either decrease (males) or not alter (females) excitability and plasticity processes. These results indicate that the majority of changes within hippocampal opioid circuits that would promote opioid-associative learning processes in both females and males do not occur with Oxy administration alone, and instead must be paired with CPP.