Publications search

Found 37684 matches. Displaying 2051-2060
Mahdaviani SA, Mansouri D, Jamee M, Zaki-Dizaji M, Aghdam KR, Mortaz E, Khorasanizadeh M, Eskian M, Movahedi M, Ghaffaripour H, Baghaie N, Hassanzad M, Chavoshzadeh Z, Mansouri M, Mesdaghi M, Ghaini M, Noori F, Eskandarzadeh S, Kahkooi S, Poorabdolah M, Tabarsi P, Moniri A, Farnia P, Karimi A, Boisson-Dupuis S, Rezaei N, Marjani M, Casanova JL, Bustamante J, Velayati AA
Show All Authors

Mendelian Susceptibility to Mycobacterial Disease (MSMD): Clinical and Genetic Features of 32 Iranian Patients

JOURNAL OF CLINICAL IMMUNOLOGY 2020 AUG; 40(6):872-882
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital condition characterized by a selective predisposition to infections caused by weakly virulent mycobacteria and other types of intra-macrophagic pathogens. The 16 genes associated with MSMD display a considerable level of allelic heterogeneity, accounting for 31 distinct disorders with variable clinical presentations and prognosis. Most of MSMD deficiencies are isolated, referred to as selective susceptibility to mycobacterial diseases. However, other deficiencies are syndromic MSMD, defined by the combination of the mycobacterial infection with another, equally common, infectious, specific phenotypes. Herein, we described a series of 32 Iranian MSMD cases identified with seven distinct types of molecular defects, all of which are involved in the interferon gamma (IFN gamma) immunity, including interleukin IL-12 receptor-beta 1 (IL-12R beta 1) deficiency (fifteen cases), IL-12p40 deficiency (ten cases), and IL-23R deficiency (three cases), as well as IFN gamma receptor 1 (IFN gamma R1) deficiency, IFN gamma receptor 2 (IFN gamma R2) deficiency, interferon-stimulated gene 15 (ISG15) deficiency, and tyrosine kinase 2 (TYK2) deficiency each in one case. Since the first report of two MSMD patients in our center, we identified 30 other affected patients with similar clinical manifestations. As the number of reported Iranian cases with MSMD diagnosis has increased in recent years and according to the national vaccination protocol, all Iranian newborns receive BCG vaccination at birth, early diagnosis, and therapeutic intervention which are required for a better outcome and also prevention of similar birth defects. Therefore, we investigated the clinical and molecular features of these 32 patients. The current report also defined novel classes of pathological mutations, further expanding our knowledge of the MSMD molecular basis and associated clinical manifestations.
Ledo JH, Liebmann T, Zhang R, Chang JC, Azevedo EP, Wong ET, Silva HM, Troyanskaya OG, Bustos V, Greengard P
Show All Authors

Presenilin 1 phosphorylation regulates amyloid-beta degradation by microglia

MOLECULAR PSYCHIATRY 2020 AUG 13; ?(?):?
Amyloid-beta peptide (A beta) accumulation in the brain is a hallmark of Alzheimer's Disease. An important mechanism of A beta clearance in the brain is uptake and degradation by microglia. Presenilin 1 (PS1) is the catalytic subunit of gamma-secretase, an enzyme complex responsible for the maturation of multiple substrates, such as A beta. Although PS1 has been extensively studied in neurons, the role of PS1 in microglia is incompletely understood. Here we report that microglia containing phospho-deficient mutant PS1 display a slower kinetic response to micro injury in the brain in vivo and the inability to degrade A beta oligomers due to a phagolysosome dysfunction. An Alzheimer's mouse model containing phospho-deficient PS1 show severe A beta accumulation in microglia as well as the postsynaptic protein PSD95. Our results demonstrate a novel mechanism by which PS1 modulates microglial function and contributes to Alzheimer's -associated phenotypes.
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, Zambirinis CP, Rodrigues G, Molina H, Heissel S, Mark MT, Steiner L, Benito-Martin A, Lucotti S, Di Giannatale A, Offer K, Nakajima M, Williams C, Nogues L, Vatter FAP, Hashimoto A, Davies AE, Freitas D, Kenific CM, Ararso Y, Buehring W, Lauritzen P, Ogitani Y, Sugiura K, Takahashi N, Aleckovic M, Bailey KA, Jolissant JS, Wang HJ, Harris A, Schaeffer LM, Garcia-Santos G, Posner Z, Balachandran VP, Khakoo Y, Raju GP, Scherz A, Sagi I, Scherz-Shouval R, Yarden Y, Oren M, Malladi M, Petriccione M, De Braganca KC, Donzelli M, Fischer C, Vitolano S, Wright GP, Ganshaw L, Marrano M, Ahmed A, DeStefano J, Danzer E, Roehrl MHA, Lacayo NJ, Vincent TC, Weiser MR, Brady MS, Meyers PA, Wexler LH, Ambati SR, Chou AJ, Slotkin EK, Modak S, Roberts SS, Basu EM, Diolaiti D, Krantz BA, Cardoso F, Simpson AL, Berger M, Rudin CM, Simeone DM, Jain M, Ghajar CM, Batra SK, Stanger B, Bui J, Brown KA, Rajasekhar VK, Healey JH, de Sousa M, Kramer K, Sheth S, Baisch J, Pascual V, Heaton TE, La Quaglia MP, Pisapia DJ, Schwartz R, Zhang HY, Liu Y, Shukla A, Blavier L, DeClerck YA, LaBarge M, Bissell MJ, Caffrey TC, Grandgenett PM, Hollingsworth MA, Bromberg J, Costa-Silva B, Peinado H, Kang YB, Garcia BA, O'Reilly EM, Kelsen D, Trippett TM, Jones DR, Matei IR, Jarnagin WR, Lyden D
Show All Authors

Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers

CELL 2020 AUG 20; 182(4):1044-1061.e18
There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers. To confirm that EVPs are ideal diagnostic tools, we analyzed proteomes of TE- (n =151) and plasma-derived (n =120) EVPs. Comparison of TE EVPs identified proteins (e.g., VCAN, TNC, and THBS2) that distinguish tumors from normal tissues with 90% sensitivity/94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity/90% specificity in detecting cancer Finally, we defined a panel of tumor-type-specific EVP proteins in TEs and plasma, which can classify tumors of unknown primary origin. Thus, EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type.
Randesi M, Rotrosen J, Nunes EV, Lee JD, Novo P, Levran O, Ott J, Pavlicova M, Scodes J, Kreek MJ
Show All Authors

Variants of opioid genes and response to treatment of opioid use disorder with buprenorphine-naloxone versus extended-release naltrexone in Caucasians

AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020 AUG 27; ?(?):1-8
Background Sublingual buprenorphine-naloxone (BUP-NX), an FDA-approved treatment for opioid use disorder (OUD), combines buprenorphine (a partial mu/kappa agonist) with naloxone (a mu/ kappa antagonist). Extended-release injection naltrexone (XR-NTX; a mu receptor antagonist and kappa receptor partial agonist) is also an FDA-approved treatment for OUD. However, while some patients respond well to these medications, many others leave treatment and relapse. Objectives Determine whether gene variants in the opioid gene system are associated with better or worse treatment response. Methods In a 24-week, multisite, randomized, comparative effectiveness trial of daily, sublingual self-administration of BUP-NX versus monthly injection of XR-NTX conducted in the National Drug Abuse Clinical Trials Network, DNA was collected and four opioid gene variants were evaluated: (1) mu opioid receptor 118A>G; (2) 68-bp repeat in prodynorphin; (3) prodynorphin SNP rs910080; and (4) kappa opioid receptor SNP rs6473797. In non-Hispanic Caucasians (N= 334), two outcomes measures were assessed: received first dose (yes/no) and received last dose (yes/no). Separate logistic regressions were used to each model outcome measure as a function of treatment (XR-NTX vs BUP-NX), each gene variant, and their interaction. Results There were no significant main effects of gene variant on receiving first dose or last dose. There were also no significant gene variant by treatment interactions. Conclusions The outcome of treatment of OUD with medications is likely a complex function of multiple factors, including environmental, psychosocial, and possibly genetic, such that major effects of genetic variants may be unlikely.
Liu XS, Zhao XL, Wang Y, Hong JB, Shi M, Pfaff D, Guo LX, Tang HW
Show All Authors

Triphenyl phosphate permeates the blood brain barrier and induces neurotoxicity in mouse brain

CHEMOSPHERE 2020 AUG; 252(?):? Article 126470
Concerns have been raised over the neurotoxicity of triphenyl phosphate (TPP), but there have been few studies of the neurotoxic effects of TPP on mammals and the underlying mechanisms. In this study, weaned male mice (C57/BL6) were used and exposed to 0, 50, or 150 mg/kg TPP daily by oral gavage for 30 days. The blood brain barrier (BBB) permeability of TPP and its metabolite diphenyl phosphate (DPP) in the brain, and TPP induced metabolomic and transcriptomic changes of the brain were investigated. The results showed that TPP and DPP can cross the BBB of mice. Histopathological examination of the brain revealed abnormalities in the hippocampus, cortex and thalamus, and mice treated with high doses showed a potential inflammation in the thalamus and hippocampus. Untargeted metabolomic results revealed that the changed level of glutamic acid, N-acetyl CoA metabolites, and organic acid in the brain of treated mice, suggest that amino acid and lipid metabolism was interfered. RNA-seq data indicated that neuronal transcription processes and cell apoptosis pathway (forkhead box (FOXO), and mitogen-activated protein kinase (MAPK) signaling pathways) were significantly affected by TPP exposure. RT-PCR showed proinflammation cytokine tumor necrosis factor alpha (TNIF-alpha) and interleukin-6 (IL-6)) levels were increased, while antioxidant genes including nuclear factor-E2-related factor 2 (Nrf2), heme oxygenase1 (HO-1) and superoxide dismutase (SOD1) decreased. These results suggest that TPP could cause a degree of neurotoxicity by inducing neuroinflammation and neuronal apoptosis, which are related to oxidative stress. The potential implications for neurophysiology and behavioral regulation cannot be ignored. (C) 2020 Elsevier Ltd. All rights reserved.
Page KM, Suarez-Farinas M, Suprun M, Zhang WD, Garcet S, Fuentes-Duculan J, Li X, Scaramozza M, Kieras E, Banfield C, Clark JD, Fensome A, Krueger JG, Peeva E
Show All Authors

Molecular and Cellular Responses to the TYK2/JAK1 Inhibitor PF-06700841 Reveal Reduction of Skin Inflammation in Plaque Psoriasis

JOURNAL OF INVESTIGATIVE DERMATOLOGY 2020 AUG; 140(8):1546-1555.e4
The IL-23/T helper type 17 cell axis is a target for psoriasis. The TYK2/Janus kinase 1 inhibitor PF-06700841 will directly suppress TYK2-dependent IL-12 and IL-23 signaling and Janus kinase 1-dependent signaling in cells expressing these signaling molecules, including T cells and keratinocytes. This clinical study sought to define the inflammatory gene and cellular pathways through which PF-06700841 improves the clinical manifestations of psoriasis. Patients (n = 30) with moderate-to-severe psoriasis were randomized to once-daily 30 mg (n = 14) or 100 mg (n = 7) PF-06700841 or placebo (n = 9) for 28 days. Biopsies were taken from nonlesional and lesional skin at baseline and weeks 2 and 4. Changes in the psoriasis transcriptome and genes induced by IL-17 in keratinocytes were evaluated with microarray profiling and reverse transcriptase-PCR. Reductions in IL-17A, IL-17F, and IL-12B mRNA were observed as early as 2 weeks and approximately 70% normalization of lesional gene expression after 4 weeks. Immunohistochemistry showed significant decreases in markers of keratinocyte activation, epidermal thickness, KRT16 and Ki-67 expression, and immune cell infiltrates CD3(+)/CD8(+) (T cells) and CD11c (dendritic cells) after 2 weeks of treatment, corresponding with improvement in histologic score. PF-06700841 improves clinical symptoms of chronic plaque psoriasis by inhibition of proinflammatory cytokines that require TYK2 and Janus kinase 1 for signal transduction.
Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang ZJ, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, Hagglof T, Oliveira TY, Viant C, Hurley A, Hoffmann HH, Millard KG, Kost RG, Cipolla M, Gordon K, Bianchini F, Chen ST, Ramos V, Patel R, Dizon J, Shimeliovich I, Mendoza P, Hartweger H, Nogueira L, Pack M, Horowitz J, Schmidt F, Weisblum Y, Michailidis E, Ashbrook AW, Waltari E, Pak JE, Huey-Tubman KE, Koranda N, Hoffman PR, West AP, Rice CM, Hatziioannou T, Bjorkman PJ, Bieniasz PD, Caskey M, Nussenzweig MC
Show All Authors

Convergent antibody responses to SARS-CoV-2 in convalescent individuals

NATURE 2020 AUG 20; 584(7821):437-442
During the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has led to the infection of millions of people and has claimed hundreds of thousands of lives. The entry of the virus into cells depends on the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2. Although there is currently no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-2(1-5). Here we report on 149 COVID-19-convalescent individuals. Plasma samples collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres; titres were less than 50 in 33% of samples, below 1,000 in 79% of samples and only 1% of samples had titres above 5,000. Antibody sequencing revealed the expansion of clones of RBD-specific memory B cells that expressed closely related antibodies in different individuals. Despite low plasma titres, antibodies to three distinct epitopes on the RBD neutralized the virus with half-maximal inhibitory concentrations (IC50 values) as low as 2 ng ml(-1). In conclusion, most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.
Zhang Q, Casanova JL
Show All Authors

Human TET2 bridges cancer and immunity

BLOOD 2020 AUG 27; 136(9):1018-1019
In this issue of Blood, Stremenova Spegarova et al report 3 patients with biallelic loss-of-function (LOF) TET2 mutations.(1) These patients suffered from infections, autoimmunity, and lymphoma, demonstrating 3 of the 5 potential phenotypes seen in inborn errors of immunity. TET2 encodes ten-eleven translocation methylcytosine dioxygenase 2 (TET2), 1 of the 3 members of the TET family of epigenetic regulators responsible for converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and subsequent oxidation products in an active DNA demethylation pathway. TET2 is ubiquitous, with particularly strong expression in hematopoietic cells. Somatic LOF TET2 mutations were first reported in patients with myeloproliferative disorders and hematologic cancers over 10 years ago.(2) TET2 haploinsufficiency has also recently been reported in families with myeloid or lymphoid cancers. Intriguingly, some of these patients also presented signs of enhanced monocyte- and macrophage-mediated inflammatory responses, together with atherosclerotic plaque development, which has been associated with increases in NLRP3 inflammasome activation.(3,4) Thus, the tumor suppressor role of TET2 has been extensively documented, especially in myeloid lineages.
Barnes CO, West AP, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda N, Gristick HB, Gaebler C, Muecksch F, Lorenzi JCC, Finkin S, Hagglof T, Hurley A, Millard KG, Weisblum Y, Schmidt F, Hatziioannou T, Bieniasz PD, Caskey M, Robbiani DF, Nussenzweig MC, Bjorkman PJ
Show All Authors

Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies

CELL 2020 AUG 20; 182(4):828-842.e16
Neutralizing antibody responses to coronaviruses mainly target the receptor-binding domain (RBD) of the trimeric spike. Here, we characterized polyclonal immunoglobulin Gs (IgGs) and Fabs from COVID-19 convalescent individuals for recognition of coronavirus spikes. Plasma IgGs differed in their focus on RBD epitopes, recognition of alpha- and beta-coronaviruses, and contributions of avidity to increased binding/neutralization of IgGs over Fabs. Using electron microscopy, we examined specificities of polyclonal plasma Fabs, revealing recognition of both S1(A) and RBD epitopes on SARS-CoV-2 spike. Moreover, a 3.4 A cryo-electron microscopy (cryo-EM) structure of a neutralizing monoclonal Fab-spike complex revealed an epitope that blocks ACE2 receptor binding. Modeling based on these structures suggested different potentials for inter-spike crosslinking by IgGs on viruses, and characterized IgGs would not be affected by identified SARS-CoV-2 spike mutations. Overall, our studies structurally define a recurrent anti-SARS-CoV-2 antibody class derived from VH3-53/VH3-66 and similarity to a SARS-CoV VH3-30 antibody, providing criteria for evaluating vaccine-elicited antibodies.
Valente PK, Wu YM, Cohen YZ, Caskey M, Meyers K
Show All Authors

Behavioral and social science research to support development of educational materials for clinical trials of broadly neutralizing antibodies for HIV treatment and prevention

CLINICAL TRIALS 2020 AUG 24; ?(?):? Article 1740774520948042
Background/Aims Early integration of behavioral and social sciences research into clinical trials can improve trial conduct and facilitate future implementation of biomedical interventions. We sought to examine participants' experiences in clinical trials with broadly neutralizing antibodies and describe the development of educational materials for use in future broadly neutralizing antibody research. Methods We conducted semi-structured interviews with trial participants in phase 1 trials evaluating safety and efficacy of broadly neutralizing antibodies for HIV prevention and treatment and key informants (i.e. trial staff involved in broadly neutralizing antibody research). Semi-structured interviews were transcribed and analyzed thematically. Based on findings from the interviews, we developed educational materials addressing concerns and misconceptions identified among trial participants with input from community and research stakeholders. Educational materials were used in subsequent clinical trials with broadly neutralizing antibodies. We evaluated trial staff's experiences with newly developed educational materials in follow-up key informant interviews. Results Although most participants were concerned about long-term harms related to the investigational product upon enrollment, absence of severe side effects in the trial led to an underestimation of risks related to the study during trial participation. Participants showed a poor understanding of what broadly neutralizing antibodies are and the differences between broadly neutralizing antibodies and other HIV prevention and treatment products, such as antiretrovirals. Many trial participants overestimated the possible public health impact of the broadly neutralizing antibody trials in which they were enrolled, associating broadly neutralizing antibody research with the development of vaccine or cure for HIV in the near future. Based on these concerns and misconceptions among trial participants, we developed a frequently asked questions document and adapted an existing educational video about broadly neutralizing antibodies. In follow-up interviews, key informants reported that materials helped address trial participants' concerns and questions related to the trial. Key informants reported using the educational materials not only during informed consent but also throughout trial participation, which contributed to making informed consent an "ongoing" process. Conclusion Integration of behavioral research into clinical trials with broadly neutralizing antibodies is key to identify and address key concerns among trial participants. Behavioral and social sciences research promotes communication between trial participants and biomedical researchers, facilitates engagement of participants and trial staff, and strengthens trial conduct. Development of educational materials collaboratively by behavioral and clinical scientists, trial staff, and community stakeholders is feasible and may help to address trial participants' concerns and misconceptions. Future research should evaluate the impact of educational materials in recruitment and retention of trial participants.