Publications search

Found 37684 matches. Displaying 1931-1940
Fuchs E, Blau HM
Show All Authors

Tissue Stem Cells: Architects of Their Niches

CELL STEM CELL 2020 OCT 1; 27(4):532-556
Stem cells (SCs) maintain tissue homeostasis and repair wounds. Despite marked variation in tissue architecture and regenerative demands, SCs often follow similar paradigms in communicating with their microenvironmental "niche" to transition between quiescent and regenerative states. Here we use skin epithelium and skeletal muscle-among the most highly-stressed tissues in our body-to highlight similarities and differences in niche constituents and how SCs mediate natural tissue rejuvenation and perform regenerative acts prompted by injuries. We discuss how these communication networks break down during aging and how understanding tissue SCs has led to major advances in regenerative medicine.
Muller PA, Matheis F, Schneeberger M, Kerner Z, Jove V, Mucida D
Show All Authors

Microbiota-modulated CART(+) enteric neurons autonomously regulate blood glucose

SCIENCE 2020 OCT 16; 370(6514):314-321
The gut microbiota affects tissue physiology, metabolism, and function of both the immune and nervous systems. We found that intrinsic enteric-associated neurons (iEANs) in mice are functionally adapted to the intestinal segment they occupy; ileal and colonic neurons are more responsive to microbial colonization than duodenal neurons. Specifically, a microbially responsive subset of viscerofugal CART(+) neurons, enriched in the ileum and colon, modulated feeding and glucose metabolism. These CART(+) neurons send axons to the prevertebral ganglia and are polysynaptically connected to the liver and pancreas. Microbiota depletion led to NLRP6- and caspase 11-dependent loss of CART(+) neurons and impaired glucose regulation. Hence, iEAN subsets appear to be capable of regulating blood glucose levels independently from the central nervous system.
Wilson BC, Boehme L, Annibali A, Hodgkinson A, Carroll TS, Oakey RJ, Seitan VC
Show All Authors

Intellectual disability-associated factor Zbtb11 cooperates with NRF-2/GABP to control mitochondrial function

NATURE COMMUNICATIONS 2020 OCT 29; 11(1):? Article 5469
Zbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function. Mechanistically, we find Zbtb11 facilitates the recruitment of nuclear respiratory factor 2 (NRF-2) to its target promoters, activating a subset of nuclear genes with roles in the biogenesis of respiratory complex I and the mitoribosome. Genetic inactivation of Zbtb11 resulted in a severe complex I assembly defect, impaired mitochondrial respiration, mitochondrial depolarisation, and ultimately proliferation arrest and cell death. Experimental modelling of the pathogenic human mutations showed these have a destabilising effect on the protein, resulting in reduced Zbtb11 dosage, downregulation of its target genes, and impaired complex I biogenesis. Our study establishes Zbtb11 as an essential mitochondrial regulator, improves our understanding of the transcriptional mechanisms of nuclear control over mitochondria, and may help to understand the aetiology of Zbtb11-associated intellectual disability.ZBTB11 mutations have been identified in patients with intellectual disability and morphological brain and neuromuscular defects, although the etiology was unknown. Here, the authors demonstrate that ZBTB11 regulates mitochondrial function by facilitating NRF-2-mediated activation of complex I and mitoribosome genes.
Dou YH, Barbosa I, Jiang H, Iasillo C, Molloy KR, Schulze WM, Cusack S, Schmid M, Le Hir H, LaCava J, Jensen TH
Show All Authors

NCBP3 positively impacts mRNA biogenesis

NUCLEIC ACIDS RESEARCH 2020 OCT 9; 48(18):10413-10427
The nuclear Cap-Binding Complex (CBC), consisting of Nuclear Cap-Binding Protein 1 (NCBP1) and 2 (NCBP2), associates with the nascent 5' cap of RNA polymerase II transcripts and impacts RNA fate decisions. Recently, the C17orf85 protein, also called NCBP3, was suggested to form an alternative CBC by replacing NCBP2. However, applying protein-protein interaction screening of NCBP1, 2 and 3, we find that the interaction profile of NCBP3 is distinct. Whereas NCBP1 and 2 identify known CBC interactors, NCBP3 primarily interacts with components of the Exon Junction Complex (EJC) and the TRanscription and EXport (TREX) complex. NCBP3-EJC association in vitro and in vivo requires EJC core integrity and the in vivo RNA binding profiles of EJC and NCBP3 overlap. We further show that NCBP3 competes with the RNA degradation factor ZC3H18 for binding CBC-bound transcripts, and that NCBP3 positively impacts the nuclear export of polyadenylated RNAs and the expression of large multi-exonic transcripts. Collectively, our results place NCBP3 with the EJC and TREX complexes in supporting mRNA expression.
Hadi K, Yao XT, Behr JM, Deshpande A, Xanthopoulakis C, Tian HS, Kudman S, Rosiene J, Darmofal M, DeRose J, Mortensen R, Adney EM, Shaiber A, Gajic Z, Sigouros M, Eng K, Wala JA, Wrzeszczynski KO, Arora K, Shah M, Emde AK, Felice V, Frank MO, Darnell RB, Ghandi M, Huang F, Dewhurst S, Maciejowski J, de Lange T, Setton J, Riaz N, Reis JS, Powell S, Knowles DA, Reznik E, Mishra B, Beroukhim R, Zody MC, Robine N, Oman KM, Sanchez CA, Kuhner MK, Smith LP, Galipeau PC, Paulson TG, Reid BJ, Li XH, Wilkes D, Sboner A, Mosquera JM, Elemento O, Imielinski M
Show All Authors

Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs

CELL 2020 OCT 1; 183(1):197-210.e32
Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.
Mast FD, Navare AT, van der Sloot AM, Coulombe-Huntington J, Rout MP, Baliga NS, Kaushansky A, Chait BT, Aderem A, Rice CM, Sali A, Tyers M, Aitchison JD
Show All Authors

Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality

JOURNAL OF CELL BIOLOGY 2020 OCT 5; 219(10):? Article e202006159
With the rapid global spread of SARS-CoV-2, we have become acutely aware of the inadequacies of our ability to respond to viral epidemics. Although disrupting the viral life cycle is critical for limiting viral spread and disease, it has proven challenging to develop targeted and selective therapeutics. Synthetic lethality offers a promising but largely unexploited strategy against infectious viral disease; as viruses infect cells, they abnormally alter the cell state, unwittingly exposing new vulnerabilities in the infected cell. Therefore, we propose that effective therapies can be developed to selectively target the virally reconfigured host cell networks that accompany altered cellular states to cripple the host cell that has been converted into a virus factory, thus disrupting the viral life cycle.
Bin Ramli MN, Lim YS, Koe CT, Demircioglu D, Tng WQ, Gonzales KAU, Tan CP, Szczerbinska I, Liang HQ, Soe EL, Lu ZP, Ariyachet C, Yu KM, Koh SH, Yaw LP, Jumat NHB, Lim JSY, Wright G, Shabbir A, Dan YY, Ng HH, Chan YS
Show All Authors

Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease

GASTROENTEROLOGY 2020 OCT; 159(4):1471-1486.e12
BACKGROUND & AIMS: There are few in vitro models for studying the 3-dimensional interactions among different liver cell types during organogenesis or disease development. We aimed to generate hepatic organoids that comprise different parenchymal liver cell types and have structural features of the liver, using human pluripotent stem cells. METHODS: We cultured H1 human embryonic stem cells (WA-01, passage 27-40) and induced pluripotent stem cells (GM23338) with a series of chemically defined and serum-free media to induce formation of posterior foregut cells, which were differentiated in 3 dimensions into hepatic endoderm spheroids and stepwise into hepatoblast spheroids. Hepatoblast spheroids were reseeded in a high-throughput format and induced to form hepatic organoids; development of functional bile canaliculi was imaged live. Levels of albumin and apolipoprotein B were measured in cell culture supernatants using an enzyme-linked immunosorbent assay. Levels of gamma glutamyl transferase and alkaline phosphatase were measured in cholangiocytes. Organoids were incubated with troglitazone for varying periods and bile transport and accumulation were visualized by live-imaging microscopy. Organoids were incubated with oleic and palmitic acid, and formation of lipid droplets was visualized by staining. We compared gene expression profiles of organoids incubated with free fatty acids or without. We also compared gene expression profiles between liver tissue samples from patients with nonalcoholic steatohepatitis (NASH) versus without. We quantified hepatocyte and cholangiocyte populations in organoids using immunostaining and flow cytometry; cholangiocyte proliferation of cholangiocytes was measured. We compared the bile canaliculi network in the organoids incubated with versus without free fatty acids by live imaging. RESULTS: Cells in organoids differentiated into hepatocytes and cholangiocytes, based on the expression of albumin and cytokeratin 7. Hepatocytes were functional, based on secretion of albumin and apolipoprotein B and cytochrome P450 activity; cholangiocytes were functional, based on gamma glutamyl transferase and alkaline phosphatase activity and proliferative responses to secretin. The organoids organized a functional bile canaliculi system, which was disrupted by cholestasis-inducing drugs such as troglitazone. Organoids incubated with free fatty acids had gene expression signatures similar to those of liver tissues from patients with NASH. Incubation of organoids with free fatty acid-enriched media resulted in structural changes associated with nonalcoholic fatty liver disease, such as decay of bile canaliculi network and ductular reactions. CONCLUSIONS: We developed a hepatic organoid platform with human cells that can be used to model complex liver diseases, including NASH.
Cheleuitte-Nieves CE, Diaz LL, de la Gandara MP, Gonzalez A, Freiwald WA, de Lencastre HM, Tomasz A, Euler CW
Show All Authors

Evaluation of Topical Lysostaphin as a Novel Treatment for Instrumented Rhesus Macaques (Macaca mulatta) Infected with Methicillin-Resistant Staphylococcus aureus

COMPARATIVE MEDICINE 2020 OCT; 70(5):335-347
Lytic enzymes are novel antimicrobial agents that degrade bacterial cell walls, resulting in cell rupture and death. We tested one enzyme, the bacteriocin lysostaphin, for treatment of nonhuman primates (Macaca mulatta) with persistent methicillin-resistant Staphylococcus aureus (MRSA) infection of their cranial implant margins. The goal of this study was to determine if topical lysostaphin, either alone or as an adjunct therapy, could eliminate MRSA. Lysostaphin had in vitro lytic activity against all 4 previously identified NHP MRSA clones, as well as against 12 MRSA isolates of the same clonal type (MLST ST3862 and spa type t4167) before and after treatment, with no resistance discovered. In an in vivo pilot study, a 2-d application of lysostaphin alone reduced MRSA in the implant margins by 3-logs during treatment of one animal; however, MRSA titers had returned to control levels by 1 wk after treatment. In the main study, all animals (n = 4) received 10 d of systemic antibiotic treatment and both the animals and their environment (cages, equipment, room) underwent 5-d of decontamination. The experimental animals (n = 2) received 5 doses of topical lysostaphin (15 mg, every other day) applied onto their implant margins. Daily cultures showed that MRSA counts decreased significantly (<= 25 colony-forming units/mL; P < 0.05). However, sampling of the cranial implant margin 7 d after last treatment showed that MRSA counts had returned to control levels. Our study suggests that lysostaphin, coupled with other treatment modalities, can decrease MRSA infection short-term but do not completely eradicate MRSA in the long-term. This reappearance of MRSA may be due to cross-contamination or reinfection from other infected areas, an inability of the treatment to reach all colonized areas, or insufficient dosing or length of treatment. Topical lysostaphin may be more useful clinically for superficial nonimplant associated wounds in which the lytic enzyme has better access to the infected tissue.
Gleicher N, Darmon S, Molinari E, Zhang L, Hu JJ, Albertini DF, Barad DH
Show All Authors

A form of secondary ovarian insufficiency (SOI) due to adrenal hypoandrogenism as new infertility diagnosis

ENDOCRINE 2020 OCT 2; ?(?):?
Background Mediated via the androgen receptor on granulosa cells, models of small growing follicle stages demonstrate dependence on testosterone. Androgen deficiency reduces ovarian response to follicle stimulation hormone (FSH), granulosa cell mass and estradiol (E2) production falls and FSH, therefore, rises. Though potentially of adrenal and/or ovarian origin, androgen deficiency in association with female infertility is almost universally primarily of adrenal origin, raising the possibility that women with presumptive diagnosis of primary ovarian insufficiency (POI), also called primary ovarian failure (POF) may actually suffer from secondary ovarian insufficiency (SOI) due to adrenal hypoandrogenism that leads to follicular arrest at small-growing follicle stages. Methods This retrospective cohort study was performed in a private, academically affiliated infertility center in New York City. We searched the center's anonymized electronic research data bank for consecutive patients who presented with a diagnosis of POI, defined by age <41 year, FSH > 40.0 mIU/mL, amenorrhea for at least 6 month, and low testosterone (T), defined as total T (TT) in the lowest age-specific quartile of normal range. This study did not include patients with oophoritis. Since dehydroepiandrosterone sulfate (DHEAS) is the only androgen almost exclusively produce by adrenals, adrenal hypoandrogenism was defined by DHEAS < 100ug/dL. Thirteen of 78 presumed POI women (16.67%) qualified and represented the original study population. POI patients are usually treated with third-party egg donation; 6/13, however, rejected egg donation for personal or religious reasons and insisted on undergoing at least one last IVF cycle attempt (final study population). In preparation, they were supplemented with DHEA 25 mg TID and CoQ10 333 mg TID for at least 6 weeks prior to ovarian stimulation for IVF with FSH and human menopausal gonadotropins (hMG). Since POI patients are expected to be resistant to ovarian stimulation, primary outcome for the study was ovarian response, while secondary outcome was pregnancy/delivery. Results Though POI/POF patients usually are completely unresponsive to ovarian stimulation, to our surprise, 5/6 (83.3%) patients demonstrated an objective follicle response. In addition, 2/6 (33.3%) conceived spontaneously between IVF cycles, while on DHEA and CoQ10 supplementation and delivered healthy offspring. One of those is currently in treatment for a second child. Conclusions This preliminary report suggests that a surprising portion of young women below age 41, tagged with a diagnosis of POI/POF, due to adrenal hypoandrogenism actually suffer from a form of SOI, at least in some cases amenable to treatment by androgen supplementation. Since true POI/POF usually requires third-party egg donation, correct differentiation between POI and SOI in such women appears of great importance and may warrant a trial stimulation after androgen pre-supplementation for at least 6 weeks.
Gaebler C, Nussenzweig MC
Show All Authors

All eyes on the hurdle race for a SARS-CoV-2 vaccine

NATURE 2020 OCT 22; 586(7830):?
Leading COVID-19 vaccine candidates have progressed through laboratory tests at record speed. Two early clinical trials suggest that immunization delivers a favourable immune response and safety profile, but questions remain.