Publications search

Found 37684 matches. Displaying 1851-1860
Wu JN, Del Duca E, Espino M, Gontzes A, Cueto I, Zhang N, Estrada YD, Pavel AB, Krueger JG, Guttman-Yassky E
Show All Authors

RNA Sequencing Keloid Transcriptome Associates Keloids With Th2, Th1, Th17/Th22, and JAK3-Skewing

FRONTIERS IN IMMUNOLOGY 2020 NOV 23; 11(?):? Article 597741
Keloids are disfiguring, fibroproliferative growths and their pathogenesis remains unclear, inhibiting therapeutic development. Available treatment options have limited efficacy and harbor safety concerns. Thus, there is a great need to clarify keloid pathomechanisms that may lead to novel treatments. In this study, we aimed to elucidate the profile of lesional and non-lesional keloid skin compared to normal skin. We performed gene (RNAseq, qRT-PCR) and protein (immunohistochemistry) expression analyses on biopsy specimens obtained from lesional and non-lesional skin of African American (AA) keloid patients compared to healthy skin from AA controls. Fold-change >= 2 and false-discovery rate (FDR)<0.05 was used to define significance. We found that lesional versus normal skin showed significant up-regulation of markers of T-cell activation/migration (ICOS, CCR7), Th2- (IL-4R, CCL11, TNFSF4/OX40L), Th1- (CXCL9/CXCL10/CXCL11), Th17/Th22- (CCL20, S100As) pathways, and JAK/STAT-signaling (JAK3) (false-discovery rate [FDR]<0.05). Non-lesional skin also exhibited similar trends. We observed increased cellular infiltrates in keloid tissues, including T-cells, dendritic cells, mast cells, as well as greater IL-4r alpha(+), CCR9(+), and periostin(+) immunostaining. In sum, comprehensive molecular profiling demonstrated that both lesional and non-lesional skin show significant immune alternations, and particularly Th2 and JAK3 expression. This advocates for the investigation of novel treatments targeting the Th2 axis and/or JAK/STAT-signaling in keloid patients.
Horioka M, Ceraudo E, Lorenzen E, Sakmar TP, Huber T
Show All Authors

Purinergic Receptors Crosstalk with CCR5 to Amplify Ca2+ Signaling

CELLULAR AND MOLECULAR NEUROBIOLOGY 2020 NOV; ?(?):?
Many G protein-coupled receptors (GPCRs) signal through more than one subtype of heterotrimeric G proteins. For example, the C-C chemokine receptor type 5 (CCR5), which serves as a co-receptor to facilitate cellular entry of human immunodeficiency virus 1 (HIV-1), normally signals through the heterotrimeric G protein, Gi. However, CCR5 also exhibits G protein signaling bias and certain chemokine analogs can cause a switch to Gq pathways to induce Ca2+ signaling. We want to understand how much of the Ca2+ signaling from Gi-coupled receptors is due to G protein promiscuity and how much is due to transactivation and crosstalk with other receptors. We propose a possible mechanism underlying the apparent switching between different G protein signaling pathways. We show that chemokine-mediated Ca2+ flux in HEK293T cells expressing CCR5 can be primed and enhanced by ATP pretreatment. In addition, agonist-dependent lysosomal exocytosis results in the release of ATP to the extracellular milieu, which amplifies cellular signaling networks. ATP is quickly degraded via ADP and AMP to adenosine. ATP, ADP and adenosine activate different cell surface purinergic receptors. Endogenous Gq-coupled purinergic P2Y receptors amplify Ca2+ signaling and allow for Gi- and Gq-coupled receptor signaling pathways to converge. Associated secretory release of GPCR ligands, such as chemokines, opioids, and monoamines, should also lead to concomitant release of ATP with a synergistic effect on Ca2+ signaling. Our results suggest that crosstalk between ATP-activated purinergic receptors and other Gi-coupled GPCRs is an important cooperative mechanism to amplify the intracellular Ca2+ signaling response.
Gareau DS, Browning J, Da Rosa JC, Suarez-Farinas M, Lish S, Zong AM, Firester B, Vrattos C, Renert-Yuval Y, Gamboa M, Vallone MG, Barragan-Estudillo ZF, Tamez-Pena AL, Montoya J, Jesus-Silva MA, Carrera C, Malvehy J, Puig S, Marghoob A, Carucci JA, Krueger JG
Show All Authors

Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues

JOURNAL OF BIOMEDICAL OPTICS 2020 NOV; 25(11):? Article 112906
Significance: Melanoma is a deadly cancer that physicians struggle to diagnose early because they lack the knowledge to differentiate benign from malignant lesions. Deep machine learning approaches to image analysis offer promise but lack the transparency to be widely adopted as stand-alone diagnostics. Aim: We aimed to create a transparent machine learning technology (i.e., not deep learning) to discriminate melanomas from nevi in dermoscopy images and an interface for sensory cue integration. Approach: Imaging biomarker cues (IBCs) fed ensemble machine learning classifier (Eclass) training while raw images fed deep learning classifier training. We compared the areas under the diagnostic receiver operator curves. Results: Our interpretable machine learning algorithm outperformed the leading deep-learning approach 75% of the time. The user interface displayed only the diagnostic imaging biomarkers as IBCs. Conclusions: From a translational perspective, Eclass is better than convolutional machine learning diagnosis in that physicians can embrace it faster than black box outputs. Imaging biomarkers cues may be used during sensory cue integration in clinical screening. Our method may be applied to other image-based diagnostic analyses, including pathology and radiology. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Shenhav L, Zeevi D
Show All Authors

Resource conservation manifests in the genetic code

SCIENCE 2020 NOV 6; 370(6517):683-687
Nutrient limitation drives competition for resources across organisms. However, much is unknown about how selective pressures resulting from nutrient limitation shape microbial coding sequences. Here, we study this "resource-driven selection" by using metagenomic and single-cell data of marine microbes, alongside environmental measurements. We show that a significant portion of the selection exerted on microbes is explained by the environment and is associated with nitrogen availability. Notably, this resource conservation optimization is encoded in the structure of the standard genetic code, providing robustness against mutations that increase carbon and nitrogen incorporation into protein sequences. This robustness generalizes to codon choices from multiple taxa across all domains of life, including the human genome.
Marrocco J, Verhaeghe R, Bucci D, Di Menna L, Traficante A, Bouwalerh H, Van Camp G, Ghiglieri V, Picconi B, Calabresi P, Ravasi L, Cisani F, Bagheri F, Pittaluga A, Bruno V, Battaglia G, Morley-Fletcher S, Nicoletti F, Maccari S
Show All Authors

Maternal stress programs accelerated aging of the basal ganglia motor system in offspring

NEUROBIOLOGY OF STRESS 2020 NOV; 13(?):? Article 100265
Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D-2 DA receptor signaling was reduced and A(2A) adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.
Gleicher N
Show All Authors

The COVID-19 pandemic through eyes of a NYC fertility center: a unique learning experience with often unexpected results

REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY 2020 NOV 4; 18(1):? Article 105
Affecting basic tenets of human existence such as health, economic as well as personal security and, of course, reproduction, the COVID-19 pandemic transcended medical specialties and professional disciplines. Yet, six months into the pandemic, there still exists no consensus on how to combat the virus in absence of a vaccine. Facing unprecedented circumstances, and in absence of real evidence on how to proceed, our organization early in the pandemic decided to act independently from often seemingly irrational guidance and, instead, to carefully follow a quickly evolving COVID-19 literature. Here described is the, likely, unique journey of a fertility center that maintained services during peaks of COVID-19 and political unrest that followed. Closely following publicly available data, we recognized relatively early that New York City and other East Coast regions, which during the initial COVID-19 wave between March and May represented the hardest-hit areas in the country, during the second wave, beginning in June and still in progress, remained almost completely unaffected. In contrast, south western regions, almost completely unaffected by the initial wave, were severely affected in the second wave. These two distinctively different infectious phenotypes suggested two likely explanations: The country was witnessing infections with two different SARS-CoV-2 viruses and NYC (along with the East Coast) acquired during the first wave much better immunity to the virus than south western regions. Both hypotheses since have been confirmed: East and West Coasts, indeed, were initially infected by two distinctively different lineages of the virus, with the East Coast lineage being 10-times more infectious. In addition, immunologists discovered an up to this point unknown long-term anti-viral innate (cellular) immune response which offers additional and much broader anti-viral immunity than the classical adaptive immunity via immobilizing antibodies that has been known for decades. Consequently, we predict that in the U.S., even in absence of an available vaccine, COVID-19, by September-October, will be at similarly low levels as are currently seen in NYC and other East Coast regions (generally < 1% test-positivity). We, furthermore, predict that, if current mitigation measures are maintained and no newly aggressive mutation of the virus enters the country, a significant fall-wave of COVID-19, in combination with the usual fall wave of influenza, appears unlikely. To continue serving patients uninterrupted throughout the pandemic, turned for all of our center's staff into a highly rewarding experience, garnered respect and appreciation from patients, and turned into an absolutely unique learning experience.
High KA
Show All Authors

Turning genes into medicines-what have we learned from gene therapy drug development in the past decade?

NATURE COMMUNICATIONS 2020 NOV 16; 11(1):? Article 5821
Gene and cell therapy products approved over the past decade in Europe and North America have provided new therapeutic options for single gene disorders and for hematologic malignancies. Lessons learned, and limitations identified, are reviewed.
Gal A, Saragosti J, Kronauer DJC
Show All Authors

anTraX, a software package for high-throughput video tracking of color-tagged insects

ELIFE 2020 NOV 19; 9(?):? Article e58145
Recent years have seen a surge in methods to track and analyze animal behavior. Nevertheless, tracking individuals in closely interacting, group-living organisms remains a challenge. Here, we present anTraX, an algorithm and software package for high-throughput video tracking of color-tagged insects. anTraX combines neural network classification of animals with a novel approach for representing tracking data as a graph, enabling individual tracking even in cases where it is difficult to segment animals from one another, or where tags are obscured. The use of color tags, a well-established and robust method for marking individual insects in groups, relaxes requirements for image size and quality, and makes the software broadly applicable. anTraX is readily integrated into existing tools and methods for automated image analysis of behavior to further augment its output. anTraX can handle large-scale experiments with minimal human involvement, allowing researchers to simultaneously monitor many social groups over long time periods.
Guilhot R, Fellous S, Cohen JE
Show All Authors

Yeast facilitates the multiplication of Drosophila bacterial symbionts but has no effect on the form or parameters of Taylor's law

PLOS ONE 2020 NOV 23; 15(11):? Article e0242692
Interactions between microbial symbionts influence their demography and that of their hosts. Taylor's power law (TL)-a well-established relationship between population size mean and variance across space and time-may help to unveil the factors and processes that determine symbiont multiplications. Recent studies suggest pervasive interactions between symbionts in Drosophila melanogaster. We used this system to investigate theoretical predictions regarding the effects of interspecific interactions on TL parameters. We assayed twenty natural strains of bacteria in the presence and absence of a strain of yeast using an ecologically realistic set-up with D. melanogaster larvae reared in natural fruit. Yeast presence led to a small increase in bacterial cell numbers; bacterial strain identity largely affected yeast multiplication. The spatial version of TL held among bacterial and yeast populations with slopes of 2. However, contrary to theoretical prediction, the facilitation of bacterial symbionts by yeast had no detectable effect on TL's parameters. These results shed new light on the nature of D. melanogaster's symbiosis with yeast and bacteria. They further reveal the complexity of investigating TL with microorganisms.
Viant C, Weymar GHJ, Escolano A, Chen S, Hartweger H, Cipolla M, Gazumyan A, Nussenzweig MC
Show All Authors

Antibody Affinity Shapes the Choice between Memory and Germinal Center B Cell Fates

CELL 2020 NOV 25; 183(5):1298-1311.e11
Immunological memory is required for protection against repeated infections and is the basis of all effective vaccines. Antibodies produced by memory B cells play an essential role in many of these responses. We have combined lineage tracing with antibody cloning from single B cells to examine the role of affinity in B cell selection into germinal centers (GCs) and the memory B cell compartment in mice immunized with an HIV-1 antigen. We find that contemporaneously developing memory and GC B cells differ in their affinity for antigen throughout the immune response. Whereas GC cells and their precursors are enriched in antigen binding, memory B cells are not. Thus, the polyclonal memory B cell compartment is composed of B cells that were activated during the immune response but whose antigen binding affinity failed to support further clonal expansion in the GC.