Publications search

Found 37684 matches. Displaying 1611-1620
Kohram M, Vashistha H, Leibler S, Xue BK, Salman H
Show All Authors

Bacterial Growth Control Mechanisms Inferred from Multivariate Statistical Analysis of Single-Cell Measurements

CURRENT BIOLOGY 2021 MAR 8; 31(5):955-+
Analysis of single-cell measurements of bacterial growth and division often relied on testing preconceived models of cell size control mechanisms. Such an approach could limit the scope of data analysis and prevent us from uncovering new information. Here, we take an "agnostic'' approach by applying regression methods to multiple simultaneously measured cellular variables, which allow us to infer dependencies among those variables from their apparent correlations. Besides previously observed correlations attributed to particular cell size control mechanisms, we identify dependencies that point to potentially new mechanisms. In particular, cells born smaller than their sisters tend to grow faster and make up for the size difference acquired during division. We also find that sister cells are correlated beyond what single-cell, size-control models predict. These trends are consistently found in repeat experiments, although the dependencies vary quantitatively. Such variation highlights the sensitivity of cell growth to environmental variations and the limitation of currently used experimental setups.
Wang YD, Niu YM, Zhang Z, Gable K, Gupta SD, Somashekarappa N, Han GS, Zhao HT, Myasnikov AG, Kalathur RC, Dunn TM, Lee CH
Show All Authors

Structural insights into the regulation of human serine palmitoyltransferase complexes

NATURE STRUCTURAL & MOLECULAR BIOLOGY 2021; 28(3):240-248
Cryo-EM structures of the enzyme complexes catalyzing the rate-limiting step in sphingolipid synthesis reveal mechanisms of substrate recognition and modulation by regulatory subunits. Sphingolipids are essential lipids in eukaryotic membranes. In humans, the first and rate-limiting step of sphingolipid synthesis is catalyzed by the serine palmitoyltransferase holocomplex, which consists of catalytic components (SPTLC1 and SPTLC2) and regulatory components (ssSPTa and ORMDL3). However, the assembly, substrate processing and regulation of the complex are unclear. Here, we present 8 cryo-electron microscopy structures of the human serine palmitoyltransferase holocomplex in various functional states at resolutions of 2.6-3.4 angstrom. The structures reveal not only how catalytic components recognize the substrate, but also how regulatory components modulate the substrate-binding tunnel to control enzyme activity: ssSPTa engages SPTLC2 and shapes the tunnel to determine substrate specificity. ORMDL3 blocks the tunnel and competes with substrate binding through its amino terminus. These findings provide mechanistic insights into sphingolipid biogenesis governed by the serine palmitoyltransferase complex.
Olivieri C, Walker C, Karamafrooz A, Wang YJ, Manu VS, Porcelli F, Blumenthal DK, Thomas DD, Bernlohr DA, Sandford SM, Taylor SS, Veglia G
Show All Authors

Defective internal allosteric network imparts dysfunctional ATP/substrate-binding cooperativity in oncogenic chimera of protein kinase A

COMMUNICATIONS BIOLOGY 2021 MAR 10; 4(1):? Article 321
Olivieri, Walker, Karamafrooz et al. show that the fusion of the dynamic J-domain to PKA-C (PKA-CDNAJB1) disrupts the internal allosteric network, attenuating the nucleotide/PKI binding cooperativity. This study suggests that the reduced allosteric cooperativity may contribute to the pathology that PKA-CDNAJB1 drives. An aberrant fusion of the DNAJB1 and PRKACA genes generates a chimeric protein kinase (PKA-C-DNAJB1) in which the J-domain of the heat shock protein 40 is fused to the catalytic alpha subunit of cAMP-dependent protein kinase A (PKA-C). Deceivingly, this chimeric construct appears to be fully functional, as it phosphorylates canonical substrates, forms holoenzymes, responds to cAMP activation, and recognizes the endogenous inhibitor PKI. Nonetheless, PKA-C-DNAJB1 has been recognized as the primary driver of fibrolamellar hepatocellular carcinoma and is implicated in other neoplasms for which the molecular mechanisms remain elusive. Here we determined the chimera's allosteric response to nucleotide and pseudo-substrate binding. We found that the fusion of the dynamic J-domain to PKA-C disrupts the internal allosteric network, causing dramatic attenuation of the nucleotide/PKI binding cooperativity. Our findings suggest that the reduced allosteric cooperativity exhibited by PKA-C-DNAJB1 alters specific recognitions and interactions between substrates and regulatory partners contributing to dysregulation.
Theis A, Singer RA, Garofalo D, Paul A, Narayana A, Sussel L
Show All Authors

Groucho co-repressor proteins regulate beta cell development and proliferation by repressing Foxa1 in the developing mouse pancreas

DEVELOPMENT 2021 MAR; 148(6):? Article dev192401
Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for beta cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4. Grg3/4 doublemutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential beta cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced beta cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.
Sullivan ZA, Khoury-Hanold W, Lim J, Smillie C, Biton M, Reis BS, Zwick RK, Pope SD, Israni-Winger K, Parsa R, Philip NH, Rashed S, Palm N, Wang A, Mucida D, Regev A, Medzhitov R
Show All Authors

gamma delta T cells regulate the intestinal response to nutrient sensing

SCIENCE 2021 MAR 19; 371(6535):1223 Article eaba8310
The intestine is a site of direct encounter with the external environment and must consequently balance barrier defense with nutrient uptake. To investigate how nutrient uptake is regulated in the small intestine, we tested the effect of diets with different macronutrient compositions on epithelial gene expression. We found that enzymes and transporters required for carbohydrate digestion and absorption were regulated by carbohydrate availability. The "on-demand" induction of this machinery required gamma delta T cells, which regulated this program through the suppression of interleukin-22 production by type 3 innate lymphoid cells. Nutrient availability altered the tissue localization and transcriptome of gamma delta T cells. Additionally, transcriptional responses to diet involved cellular remodeling of the epithelial compartment. Thus, this work identifies a role for gamma delta T cells in nutrient sensing.
Nimmerjahn F, Ravetch JV
Show All Authors

Four keys to unlock IgG

JOURNAL OF EXPERIMENTAL MEDICINE 2021 MAR 1; 218(3):? Article e20201753
The identification of discrete subclasses within the immunoglobulin G (IgG) isotype by Grey and Kunkel (1964. J. Exp. Med. https://doi.org/10.1084/jem.120.2.253) provided the framework for our current understanding of differential IgG subclass activity in protective and self-reactive immune responses.
Liu J, Wang ZJ, Li J, Xu LH, Liu JQ, Feng SH, Guo CX, Chen SC, Ren ZJ, Rao JP, Wei K, Chen YZ, Jarvis ED, Zhang GJ, Zhou Q
Show All Authors

A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes

GENOME RESEARCH 2021 MAR; 31(3):497-511
Emu and other ratites are more informative than any other birds in reconstructing the evolution of the ancestral avian or vertebrate karyotype because of their much slower rate of genome evolution. Here, we generated a new chromosome-level genome assembly of a female emu, and estimated the tempo of chromosome evolution across major avian phylogenetic branches, by comparing it to chromosome-level genome assemblies of 11 other bird and one turtle species. We found ratites exhibited the lowest numbers of intraand inter-chromosomal changes among birds since their divergence with turtles. The small-sized and gene-rich emu microchromosomes have frequent inter-chromosomal contacts that are associated with housekeeping genes, which appears to be driven by clustering their centromeres in the nuclear interior, away from the macrochromosomes in the nuclear periphery. Unlike nonratite birds, only less than one-third of the emu W Chromosome regions have lost homologous recombination and diverged between the sexes. The emu W is demarcated into a highly heterochromatic region (WS0) and another recently evolved region (WS1) with only moderate sequence divergence with the Z Chromosome. WS1 has expanded its inactive chromatin compartment, increased chromatin contacts within the region, and decreased contacts with the nearby regions, possibly influenced by the spreading of heterochromatin from WS0. These patterns suggest that alteration of chromatin conformation comprises an important early step of sex chromosome evolution. Overall, our results provide novel insights into the evolution of avian genome structure and sex chromosomes in three-dimensional space.
Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, Cocciadiferro D, Agolini E, Colona VL, Rizzacasa B, Giannini R, Bigio B, Goletti D, Capobianchi MR, Grelli S, Mann J, McKee TD, Cheng K, Amanat F, Krammer F, Guarracino A, Pepe G, Tomino C, Tandjaoui-Lambiotte Y, Uzunhan Y, Tubiana S, Ghosn J, Notarangelo LD, Su HC, Abel L, Cobat A, Elhanan G, Grzymski JJ, Latini A, Sidhu SS, Jain S, Davey RA, Casanova JL, Wei WY, Pandolfi PP
Show All Authors

Inhibition of HECT E3 ligases as potential therapy for COVID-19

CELL DEATH & DISEASE 2021 MAR 24; 12(4):? Article 310
SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.
Fidler S, Lewin S, Deeks S, Sogaard OS, Vandekerckhove L, Collins S, Kelly D, Singh J, Caskey M, Frater J
Show All Authors

HIV cure research in the time of COVID-19 - Antiretroviral therapy treatment interruption trials: A discussion paper

JOURNAL OF VIRUS ERADICATION 2021 MAR; 7(1):? Article 100025
This discussion paper addresses the safety of HIV cure studies, particularly those involving stopping antiretroviral therapy, known as an analytic treatment interruption (ATI) in the context of the SARS-CoV-2 pandemic. More than 30 studies listed on ClinicalTrials.gov include an ATI and many others were planned to begin over the next 12 months but most were halted due to the COVID-19 pandemic. We consider the ethics, risks and practical considerations to be taken into account before re-opening HIV cure clinical trials, noting the specific risks of ATI in the context of circulating SARS-CoV-2.
Lorenzi JCC, Mendoza P, Cohen YZ, Nogueira L, Lavine C, Sapiente J, Wiatr M, Mugo NR, Mujugira A, Delany S, Lingappa J, Celum C, Seaman MS, Caskey M, Nussenzweig MC
Show All Authors

Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Primary African Isolates

JOURNAL OF VIROLOGY 2021 MAR; 95(5):? Article e01909-20
Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Broadly neutralizing human antibodies (bNAbs) with exceptional activity against HIV-1 are currently being tested in HIV-1 prevention trials. The selection of anti-HIV-1 bNAbs for clinical development was primarily guided by their in vitro neutralizing activity against HIV-1 Env-pseudotyped viruses. Here, we report on the neutralizing activity of 9 anti-HIV-1 bNAbs now in clinical development against 126 Glade A, C, and D peripheral blood mononuclear cell (PBMC)-derived primary African isolates. The neutralizing potency and breadth of the bNAbs tested were significantly reduced compared to those seen with pseudotyped-virus panels. The difference in sensitivity between pseudotyped viruses and primary isolates varied from 3- to nearly 100-fold depending on the bNAb and the HIV-1 Glade. Thus, the neutralizing activity of bNAbs against primary African isolates differs from their activity against pseudovirus panels. The data have significant implications for interpreting the results of ongoing HIV-1 prevention trials. IMPORTANCE HIV remains a major public health problem worldwide, and new therapies and preventive strategies are necessary for controlling the epidemic. Broadly neutralizing antibodies (bNAbs) have been developed in the past decade to fill this gap. The neutralizing activity of these antibodies against diverse HIV strains has mostly been measured using Env-pseudotyped viruses, which overestimate bNAb coverage and potency. In this study, we measured the neutralizing activity of nine bNAbs against Glade A, C, and D HIV isolates derived from cells of African patients living with HIV and produced in peripheral blood mononuclear cells. We found that the coverage and potency of bNAbs were often significantly lower than what was predicted by Env-pseudotyped viruses and that this decrease was related to the bNAb binding site class. These data are important for the planning and analysis of clinical trials that seek to evaluate bNAbs for the treatment and prevention of HIV infection in Africa.