Publications search

Found 37684 matches. Displaying 1571-1580
Subramanian S, Gorday K, Marcus K, Orellana MR, Ren P, Luo XR, O'Donnell ME, Kuriyan J
Show All Authors

Allosteric communication in DNA polymerase clamp loaders relies on a critical hydrogen-bonded junction

ELIFE 2021 APR 13; 10(?):? Article e66181
Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.
Thaler DS
Show All Authors

Is Global Microbial Biodiversity Increasing, Decreasing, or Staying the Same?

FRONTIERS IN ECOLOGY AND EVOLUTION 2021 APR 19; 9(?):? Article 565649
Animal and plant biodiversity is decreasing. In contrast, the global direction and the pace of change in microbial, including viral, biodiversity is unknown. Important niches for microbial diversity occur in highly specific associations with plants and animals, and these niches are lost as hosts become extinct. The taxonomic diversity of human gut bacteria is reported to be decreasing. On the other hand, SARS-CoV-2 variation is increasing. Where microbes are concerned, Darwin's "tangled bank" of interdependent organisms may be composed mostly of other microbes. There is the likelihood that as some classes of microbes become extinct, others evolve and diversify. A better handle on all processes that affect microbial biodiversity and their net balance is needed. Lack of insight into the dynamics of evolution of microbial biodiversity is arguably the single most profound and consequential unknown with regard to human knowledge of the biosphere. If some or all parts of microbial diversity are relentlessly increasing, then survey approaches may be too slow to ever catch up. New approaches, including single-molecule or single-cell sequencing in populations, as well as focused attention on modulators and vectors of vertical and horizontal evolution may offer more direct insights into some aspects of the pace of microbial evolution.
Kronenberg ZN, Rhie A, Koren S, Concepcion GT, Peluso P, Munson KM, Porubsky D, Kuhn K, Mueller KA, Low WY, Hiendleder S, Fedrigo O, Liachko I, Hall RJ, Phillippy AM, Eichler EE, Williams JL, Smith TPL, Jarvis ED, Sullivan ST, Kingan SB
Show All Authors

Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C

NATURE COMMUNICATIONS 2021 APR 28; 12(1):? Article 1935
Haplotype-resolved genome assemblies are important for understanding how combinations of variants impact phenotypes. To date, these assemblies have been best created with complex protocols, such as cultured cells that contain a single-haplotype (haploid) genome, single cells where haplotypes are separated, or co-sequencing of parental genomes in a trio-based approach. These approaches are impractical in most situations. To address this issue, we present FALCON-Phase, a phasing tool that uses ultra-long-range Hi-C chromatin interaction data to extend phase blocks of partially-phased diploid assembles to chromosome or scaffold scale. FALCON-Phase uses the inherent phasing information in Hi-C reads, skipping variant calling, and reduces the computational complexity of phasing. Our method is validated on three benchmark datasets generated as part of the Vertebrate Genomes Project (VGP), including human, cow, and zebra finch, for which high-quality, fully haplotype-resolved assemblies are available using the trio-based approach. FALCON-Phase is accurate without having parental data and performance is better in samples with higher heterozygosity. For cow and zebra finch the accuracy is 97% compared to 80-91% for human. FALCON-Phase is applicable to any draft assembly that contains long primary contigs and phased associate contigs. Methods to produce haplotype-resolved genome assemblies often rely on access to family trios. The authors present FALCON-Phase, a tool that combines ultra-long range Hi-C chromatin interaction data with a long read de novo assembly to extend haplotype phasing to the contig or scaffold level.
Elnabawi YA, Garshick MS, Tawil M, Barrett TJ, Fisher EA, Lo Sicco K, Neimann AL, Scher JU, Krueger J, Berger JS
Show All Authors

CCL20 in psoriasis: A potential biomarker of disease severity, inflammation, and impaired vascular health

JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY 2021 APR; 84(4):913-920
Background: Psoriasis is associated with increased cardiovascular risk that is not captured by traditional proinflammatory biomarkers. Objective: To investigate the relationship between Psoriasis Area and Severity Index, circulating proinflammatory biomarkers, and vascular health in psoriasis. Methods: In patients with psoriasis and in age and sex-matched controls, 273 proteins were analyzed with the Proseek Multiplex Cardiovascular disease reagents kit and Inflammatory reagents kit (Olink Bioscience), whereas vascular endothelial inflammation and health were measured via direct transcriptomic analysis of brachial vein endothelial cells. Results: In psoriasis, chemokine ligand 20 (CCL20), interleukin (IL) 6, and IL-17A were the top 3 circulating proinflammatory cytokines. Vascular endothelial inflammation correlated with CCL20 (r = 0.55; P < .001) and less so with IL-6 (r = 0.36; P = .04) and IL-17A (r = 0.29; P = .12). After adjustment for potential confounders, the association between CCL20 and vascular endothelial inflammation remained significant (beta = 1.71; P = .02). In nested models, CCL20 added value (chi(2) = 79.22; P < .001) to a model already incorporating the Psoriasis Area and Severity Index, Framingham risk, high-sensitivity C-reactive protein, Il-17A, and IL-6 (chi(2) = 48.18; P < .001) in predicting vascular endothelial inflammation. Limitations: Our study was observational and did not allow for causal inference in the relationship between CCL20 and cardiovascular risk. Conclusion: We demonstrate that CCL20 expression has a strong association with vascular endothelial inflammation, reflects systemic inflammation, and may serve as a potential biomarker of impaired vascular health in psoriasis.
Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA, Doudna JA
Show All Authors

A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration

NUCLEIC ACIDS RESEARCH 2021 APR 6; 49(6):3546-3556
CRISPR-Cas9 is an RNA-guided DNA endonuclease involved in bacterial adaptive immunity and widely repurposed for genome editing in human cells, animals and plants. In bacteria, RNA molecules that guide Cas9 ' s activity derive from foreign DNA fragments that are captured and integrated into the host CRISPR genomic locus by the Cas1-Cas2 CRISPR integrase. How cells generate the specific lengths of DNA required for integrase capture is a central unanswered question of type II-A CRISPR-based adaptive immunity. Here, we show that an integrase supercomplex comprising guide RNA and the proteins Cas1, Cas2, Csn2 and Cas9 generates precisely trimmed 30-base pair DNA molecules required for genome integration. The HNH active site of Cas9 catalyzes exonucleolytic DNA trimming by a mechanism that is independent of the guide RNA sequence. These results show that Cas9 possesses a distinct catalytic capacity for generating immunological memory in prokaryotes.
El-Etr M, Akwa Y, Rame M, Schumacher M, Sitruk-Ware R
Show All Authors

Nestorone(R), a 19nor-progesterone derivative boosts remyelination in an animal model of demyelination

CNS NEUROSCIENCE & THERAPEUTICS 2021; 27(4):464-469
Introduction We previously showed that Nestorone(R) (NES), a synthetic progestin structurally related to progesterone, stimulated remyelination of the corpus callosum in a Cuprizone (CUP) mouse model of demyelination in intact females by promoting replenishment with mature oligodendrocytes (OL) (Glia. 2015;63:104-117). Here, we further investigated the underlying mechanisms of this promyelinating effect. Methods We explored whether NES, applied subcutaneously through Alzet mini-osmotic pumps, regulates specific transcription factors involved in oligodendrocyte progenitor cell (OPC) proliferation and their differentiation into mature OL, using RT-qPCR and Western Blot analysis. Results Our present data show that in comparison to controls, a one-week treatment with NES, through Alzet mini-osmotic pumps, enhanced the production of three relevant transcription factor mRNAs encoding Olig2, Myt1, and Sox17. After 3 weeks, NES treatment reversed the effect of CUP on the levels of corresponding Olig2, Myt1, and Sox17 proteins. Moreover, in mice receiving NES + Estradiol (E2) co-treatment, levels of Olig2, Myt1, and Sox17 proteins did not change as compared to NES alone. Conclusion NES alone or with E2 increased the levels of transcription factors, essential for myelin synthesis.
Michel AO, Bendet A, Cheleuitte-Nieves C, Yarmohammadi H, Nurili F, Monette S, Michel AO, Bendet A, Basturk O, Askan G, Cheleuitte-Nieves C, Yarmohammadi H, Maxwell AWP, Ziv E, Schachtschneider KM, Gaba RC, Schook LB, Solomon SB, Boas FE
Show All Authors

Transarterial Embolization of Liver Cancer in a Transgenic Pig Model

JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY 2021 APR; 32(4):510-+
Purpose: To develop and characterize a porcine model of liver cancer that could be used to test new locoregional therapies. Materials and Methods: Liver tumors were induced in 18 Oncopigs (transgenic pigs with Cre-inducible TP53R167H and KRASG12D mutations) by using an adenoviral vector encoding the Cre-recombinase gene. The resulting 60 tumors were characterized on multiphase contrast-enhanced CT, angiography, perfusion, micro-CT, and necropsy. Transarterial embolization was performed using 40?120 ?m (4 pigs) or 100?300 ?m (4 pigs) Embosphere microspheres. Response to embolization was evaluated on imaging. Complications were determined based on daily clinical evaluation, laboratory results, imaging, and necropsy. Results: Liver tumors developed at 60/70 (86%) inoculated sites. Mean tumor size was 2.1 cm (range, 0.3?4 cm) at 1 week. Microscopically, all animals developed poorly differentiated to undifferentiated carcinomas accompanied by a major inflammatory component, which resembled undifferentiated carcinomas of the human pancreatobiliary tract. Cytokeratin and vimentin expression confirmed epithelioid and mesenchymal differentiation, respectively. Lymph node, lung, and peritoneal metastases were seen in some cases. On multiphase CT, all tumors had a hypovascular center, and 17/60 (28%) had a hypervascular rim. After transarterial embolization, noncontrast CT showed retained contrast medium in the tumors. Follow-up contrast-enhanced scan showed reduced size of tumors after embolization using either 40?120 ?m or 100?300 ?m Embosphere microspheres, while untreated tumors showed continued growth. Conclusions: Liver tumors can be induced in a transgenic pig and can be successfully treated using bland embolization.
Gaebler C, Wang ZJ, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaefer-Babajew D, Oliveira TY, Cipolla M, Viant C, Barnes CO, Bram Y, Breton G, Hagglof T, Mendoza P, Hurley A, Turroja M, Gordon K, Millard KG, Ramos V, Schmidt F, Weisblum Y, Jha D, Tankelevich M, Martinez-Delgado G, Yee J, Patel R, Dizon J, Unson-O'Brien C, Shimeliovich I, Robbiani DF, Zhao Z, Gazumyan A, Schwartz RE, Hatziioannou T, Bjorkman PJ, Mehandru S, Bieniasz PD, Caskey M, Nussenzweig MC
Show All Authors

Evolution of antibody immunity to SARS-CoV-2

NATURE 2021 MAR 25; 591(7851):639-644
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models(1,2). Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.
Maguire OA, Ackerman SE, Szwed SK, Maganti AV, Marchildon F, Huang XJ, Kramer DJ, Rosas-Villegas A, Gelfer RG, Turner LE, Ceballos V, Hejazi A, Samborska B, Rahbani JF, Dykstra CB, Annis MG, Luo JD, Carroll TS, Jiang CS, Dannenberg AJ, Siegel PM, Tersey SA, Mirmira RG, Kazak L, Cohen P
Show All Authors

Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer

CELL METABOLISM 2021 MAR 2; 33(3):499-512.e6
Obesity is a major risk factor for adverse outcomes in breast cancer; however, the underlying molecular mechanisms have not been elucidated. To investigate the role of crosstalk between mammary adipocytes and neoplastic cells in the tumor microenvironment (TME), we performed transcriptomic analysis of cancer cells and adjacent adipose tissue in a murine model of obesity-accelerated breast cancer and identified glycine amidinotransferase (Gatm) in adipocytes and Acsbg1 in cancer cells as required for obesity-driven tumor progression. Gatm is the rate-limiting enzyme in creatine biosynthesis, and deletion in adipocytes attenuated obesity-driven tumor growth. Similarly, genetic inhibition of creatine import into cancer cells reduced tumor growth in obesity. In parallel, breast cancer cells in obese animals upregulated the fatty acyl-CoA synthetase Acsbg1 to promote creatine-dependent tumor progression. These findings reveal key nodes in the crosstalk between adipocytes and cancer cells in the TME necessary for obesity-driven breast cancer progression.
Cai BL, Li ZH, Ma MT, Zhang J, Kong SF, Abdalla BA, Xu HP, Jebessa E, Zhang XQ, Lawal RA, Nie QH
Show All Authors

Long noncoding RNA SMUL suppresses SMURF2 production-mediated muscle atrophy via nonsense-mediated mRNA decay

MOLECULAR THERAPY-NUCLEIC ACIDS 2021 MAR 5; 23(?):498-+
As the world population grows, muscle atrophy leading to muscle wasting could become a bigger risk. Long noncoding RNAs (lncRNAs) are known to play important roles in muscle growth and muscle atrophy. Meanwhile, it has recently come to light that many putative small open reading frames (sORFs) are hidden in lncRNAs; however, their translational capabilities and functions remain unclear. In this study, we uncovered 104 myogenic-associated lncRNAs translated, in at least a small peptide, by integrated transcriptome and proteomic analyses. Furthermore, an upstream ORF (uORF) regulatory network was constructed, and a novel muscle atrophy-associated lncRNA named SMUL (Smad ubiquitin regulatory factor 2 [SMURF2] upstream lncRNA) was identified. SMUL was highly expressed in skeletal muscle, and its expression level was down regulated during myoblast differentiation. SMUL promoted myoblast proliferation and suppressed differentiation in vitro. In vivo, SMUL induced skeletal muscle atrophy and promoted a switch from slow-twitch to fast-twitch fibers. In the meantime, translation of the SMUL sORF disrupted the stability of SMURF2 mRNA. Mechanistically, SMUL restrained SMURF2 production via nonsense-mediated mRNA decay (NMD), participating in the regulation of the transforming growth factor beta (TGF-beta)/SMAD pathway and further regulating myogenesis and muscle atrophy. Taken together, these results suggest that SMUL could be a novel therapeutic target for muscle atrophy.