Publications search

Found 37684 matches. Displaying 1521-1530
Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao XY, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA
Show All Authors

Structural basis for backtracking by the SARS-CoV-2 replication & ndash;transcription complex

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2021 MAY 11; 118(19):? Article e2102516118
Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein cross-linking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3 ' segment of the product RNA generated by backtracking extrudes through the RdRp nucleoside triphosphate (NTP) entry tunnel, that a mismatched nucleotide at the product RNA 3 ' end frays and enters the NTP entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.
Pac M, Casanova JL, Reisli I, Marodi L
Show All Authors

Editorial: Advances in Primary Immunodeficiency in Central-Eastern Europe

FRONTIERS IN IMMUNOLOGY 2021 MAY 14; 12(?):? Article 667727
Garris CS, Wong JL, Ravetch JV, Knorr DA
Show All Authors

Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer

SCIENCE TRANSLATIONAL MEDICINE 2021 MAY 19; 13(594):? Article eabd1346
Intravesical immunotherapy using Bacille Calmette-Guerin (BCG) attenuated bacteria delivered transurethrally to the bladder has been the standard of care for patients with high-risk non-muscle-invasive bladder cancer (NMIBC) for several decades. BCG therapy continues to be limited by high rates of disease recurrence and progression, and patients with BCG-unresponsive disease have few effective salvage therapy options besides radical cystectomy, highlighting a need for new therapies. We report that the immune-stimulatory receptor CD40 is highly expressed on dendritic cells (DCs) within the bladder tumor microenvironment of orthotopic bladder cancer mouse models, recapitulating CD40 expression by DCs found in human disease. We demonstrate that local CD40 agonism in mice with orthotopic bladder cancer through intravesical delivery of anti-CD40 agonist antibodies drives potent antitumor immunity and induces pharmacodynamic effects in the bladder tumor microenvironment, including a reduction in CD8(+) T cells with an exhausted phenotype. We further show that type 1 conventional DCs (cDC1) and CD8(+) T cells are required for both bladder cancer immune surveillance and anti-CD40 agonist antibody responses. Using orthotopic murine models humanized for CD40 and Fc. receptors, we demonstrate that intravesical treatment with a fully human, Fc-enhanced anti-CD40 agonist antibody (2141-V11) induces robust antitumor activity in both treatment-naive and treatment-refractory settings, driving long-term systemic antitumor immunity with no evidence of systemic toxicity. These findings support targeting CD40-expressing DCs in the bladder cancer microenvironment through an intravesical agonistic antibody approach for the treatment of NMIBC.
De Gasparo R, Pedotti M, Simonelli L, Nickl P, Muecksch F, Cassaniti I, Percivalle E, Lorenzi JCC, Mazzola F, Magri D, Michalcikova T, Haviernik J, Honig V, Mrazkova B, Polakova N, Fortova A, Tureckova J, Iatsiuk V, Di Girolamo S, Palus M, Zudova D, Bednar P, Bukova I, Bianchini F, Mehn D, Nencka R, Strakova P, Pavlis O, Rozman J, Gioria S, Sammartino JC, Giardina F, Gaiarsa S, Pan-Hammarstrom Q, Barnes CO, Bjorkman PJ, Calzolai L, Piralla A, Baldanti F, Nussenzweig MC, Bieniasz PD, Hatziioannou T, Prochazka J, Sedlacek R, Robbiani DF, Ruzek D, Varani L
Show All Authors

Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice

NATURE 2021 May 20; 593(7859):424-428
Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-19(1,2). A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-19(3). Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.
Galea S, Vaughan R
Show All Authors

The Role of Natural Experiments in Advancing Public Health Science and Practice

AMERICAN JOURNAL OF PUBLIC HEALTH 2021 MAY; 111(5):787-788
Tanaka M, Kunimatsu J, Suzuki TW, Kameda M, Ohmae S, Uematsu A, Takeya R
Show All Authors

Roles of the Cerebellum in Motor Preparation and Prediction of Timing

NEUROSCIENCE 2021 MAY 10; 462(?):220-234
cerebellum is thought to have a variety of functions because it developed with the evolution of the cerebrum and connects with different areas in the frontoparietal cortices. Like neurons in the cerebral cortex, those in the cerebellum also exhibit strong activity during planning in addition to the execution of movements. However, their specific roles remain elusive. In this article, we review recent findings focusing on preparatory activities found in the primate deep cerebellar nuclei during tasks requiring deliberate motor control and temporal prediction. Neurons in the cerebellum are active during anti-saccade preparation and their inactivation impairs proactive inhibitory control for saccades. Experiments using a self-timing task show that there are mechanisms for tracking elapsed time and regulating trial-by-trial variation in timing, and that the cerebellum is involved in the latter. When predicting the timing of periodic events, the cerebellum provides more accurate temporal information than the striatum. During a recently developed synchronized eye movement task, cerebellar nuclear neurons exhibited periodic preparatory activity for predictive synchronization. In all cases, the cerebellum generated preparatory activity lasting for several hundred milliseconds. These signals may regulate neuronal activity in the cerebral cortex that adjusts movement timing and predicts the timing of rhythmic events. This article is part of a Special Issue entitled: In Memoriam: Masao Ito?A Visionary Neuroscientist with a Passion for the Cerebellum. ? 2020 IBRO. Published by Elsevier Ltd. All rights reserved.
Cho SY, Lee G, Pickering BF, Jang CS, Park JH, He L, Mathur L, Kim SS, Jung SH, Tang HW, Monette S, Rabinowitz JD, Perrimon N, Jaffrey SR, Blenis J
Show All Authors

mTORC1 promotes cell growth via m(6)A-dependent mRNA degradation

MOLECULAR CELL 2021 MAY 20; 81(10):2064-2075.e8
Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N-6-methyladenosine (m(6)A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m(6)A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m(6)A, and increased m(6)A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m(6)A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.
Ha B, Larsen KP, Zhang JJ, Fu ZA, Montabana E, Jackson LN, Chen DH, Puglisi EV
Show All Authors

High-resolution view of HIV-1 reverse transcriptase initiation complexes and inhibition by NNRdrugs

NATURE COMMUNICATIONS 2021 MAY 4; 12(1):? Article 2500
Reverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNA(3)(Lys) primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC-nevirapine, and RTIC-efavirenz complexes at 2.8, 3.1, and 2.9 angstrom, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA-tRNA(3)(Lys) initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription. Initiation of HIV-1 reverse transcription occurs at the host tRNA(3)(Lys), which forms a complex with the 5' end of the HIV-1 viral RNA and reverse transcriptase (RT). Here, the authors present the 2.8 angstrom cryo-EM structure of a minimal HIV-1 RT-vRNA-tRNA(3)(Lys) initiation complex (miniRTIC), and miniRTIC structures with the bound non-nucleoside reverse transcriptase inhibitors nevirapine and efavirenz at 3.1 and 2.9 angstrom resolution, respectively.
Levin D, Raab N, Pinto Y, Rothschild D, Zanir G, Godneva A, Mellul N, Futorian D, Gal D, Leviatan S, Zeevi D, Bachelet I, Segal E
Show All Authors

Diversity and functional landscapes in the microbiota of animals in the wild

SCIENCE 2021 APR 16; 372(6539):254-+ Article eabb5352
Animals in the wild are able to subsist on pathogen-infected and poisonous food and show immunity to various diseases. These may be due to their microbiota, yet we have a poor understanding of animal microbial diversity and function. We used metagenomics to analyze the gut microbiota of more than 180 species in the wild, covering diverse classes, feeding behaviors, geographies, and traits. Using de novo metagenome assembly, we constructed and functionally annotated a database of more than 5000 genomes, comprising 1209 bacterial species of which 75% are unknown. The microbial composition, diversity, and functional content exhibit associations with animal taxonomy, diet, activity, social structure, and life span. We identify the gut microbiota of wild animals as a largely untapped resource for the discovery of therapeutics and biotechnology applications.
Sewastianik T, Straubhaar JR, Zhao JJ, Samur MK, Adler K, Tanton HE, Shanmugam V, Nadeem O, Dennis PS, Pillai V, Wang JL, Jiang M, Lin JH, Huang Y, Brooks D, Bouxsein M, Dorfman DM, Pinkus GS, Robbiani DF, Ghobrial IM, Budnik B, Jarolim P, Munshi NC, Anderson KC, Carrasco RD
Show All Authors

miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms

BLOOD 2021 APR 8; 137(14):1905-1919
Chromosome 13q deletion [del(13q)], harboring the miR-15a/16-1 cluster, is one of the most common genetic alterations in mature B-cell malignancies, which originate from germinal center (GC) and post-GC B cells. Moreover, miR-15a/16 expression is frequently reduced in lymphoma and multiple myeloma (MM) cells without del(13q), suggesting important tumor-suppressor activity. However, the role of miR-15a/16-1 in B-cell activation and initiation of mature B-cell neoplasms remains to be determined. We show that conditional deletion of the miR-15a/16-1 cluster in murine GC B cells induces moderate but widespread molecular and functional changes including an increased number of GC B cells, percentage of dark zone B cells, and maturation into plasma cells. With time, this leads to development of mature B-cell neoplasms resembling human extramedullary plasmacytoma (EP) as well as follicular and diffuse large B-cell lymphomas. The indolent nature and lack of bone marrow involvement of EP in our murine model resembles human primary EP rather than MM that has progressed to extramedullary disease. We corroborate human primary EP having low levels of miR-15a/16 expression, with del(13q) being the most common genetic loss. Additionally, we show that, although the mutational profile of human EP is similar to MM, there are some exceptions such as the low frequency of hyperdiploidy in EP, which could account for different disease presentation. Taken together, our studies highlight the significant role of the miR-15a/16-1 cluster in the regulation of the GC reaction and its fundamental context-dependent tumor-suppression function in plasma cell and B-cell malignancies.