Publications search

Found 37684 matches. Displaying 1091-1100
Yang Z, Dam KMA, Bridges MD, Hoffmann MAG, DeLaitsch AT, Gristick HB, Escolano A, Gautam R, Martin MA, Nussenzweig MC, Hubbell WL, Bjorkman PJ
Show All Authors

Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer

NATURE COMMUNICATIONS 2022 FEB 8; 13(1):? Article 732
Broadly-neutralizing antibodies (bNAbs) against HIV-1 Env can protect from infection. We characterize Ab1303 and Ab1573, heterologously-neutralizing CD4-binding site (CD4bs) antibodies, isolated from sequentially-immunized macaques. Ab1303/Ab1573 binding is observed only when Env trimers are not constrained in the closed, prefusion conformation. Fab-Env cryo-EM structures show that both antibodies recognize the CD4bs on Env trimer with an 'occluded-open' conformation between closed, as targeted by bNAbs, and fully-open, as recognized by CD4. The occluded-open Env trimer conformation includes outwardly-rotated gp120 subunits, but unlike CD4-bound Envs, does not exhibit V1V2 displacement, 4-stranded gp120 bridging sheet, or co-receptor binding site exposure. Inter-protomer distances within trimers measured by double electron-electron resonance spectroscopy suggest an equilibrium between occluded-open and closed Env conformations, consistent with Ab1303/Ab1573 binding stabilizing an existing conformation. Studies of Ab1303/Ab1573 demonstrate that CD4bs neutralizing antibodies that bind open Env trimers can be raised by immunization, thereby informing immunogen design and antibody therapeutic efforts.
Larsen J, Raisen CL, Ba XL, Sadgrove NJ, Padilla-Gonzalez GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, Deplano A, Vandendriessche S, Bolfikova BC, Hulva P, Arendrup MC, Hare RK, Barnadas C, Stegger M, Sieber RN, Skov RL, Petersen A, Angen O, Rasmussen SL, Espinosa-Gongora C, Aarestrup FM, Lindholm LJ, Nykasenoja SM, Laurent F, Becker K, Walther B, Kehrenberg C, Cuny C, Layer F, Werner G, Witte W, Stamm I, Moroni P, Jorgensen HJ, de Lencastre H, Cercenado E, Garcia-Garrote F, Borjesson S, Haeggman S, Perreten V, Teale CJ, Waller AS, Pichon B, Curran MD, Ellington MJ, Welch JJ, Peacock SJ, Seilly DJ, Morgan FJE, Parkhill J, Hadjirin NF, Lindsay JA, Holden MTG, Edwards GF, Foster G, Paterson GK, Didelot X, Holmes MA, Harrison EM, Larsen AR
Show All Authors

Emergence of methicillin resistance predates the clinical use of antibiotics

NATURE 2022 FEB 3; 602(7895):135-+
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics(1). Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two beta-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.
McKerrow W, Wang XY, Mendez-Dorantes C, Mita P, Cao S, Grivainis M, Ding L, LaCava J, Burns KH, Boeke JD, Fenyo D
Show All Authors

LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2022 FEB 22; 119(8):? Article e2115999119
Retrotransposons are genomic DNA sequences that copy them-selves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expres-sion. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.
Ghosn M, Elsakka AS, Ridouani F, Doustaly R, Mingione L, Royalty K, Ziv E, Alexander E, Maxwell A, Monette S, Kim HS, Short RF, Tam AL, Suh RD, Solomon SB
Show All Authors

Augmented fluoroscopy guided transbronchial pulmonary microwave ablation using a steerable sheath

TRANSLATIONAL LUNG CANCER RESEARCH 2022 FEB; 11(2):150-+
Background: Transbronchial microwave ablation (MWA) is a promising novel therapy. Despite advances in bronchoscopy and virtual navigation, real time image guidance of probe delivery is lacking, and distal maneuverability is limited. Cone-beam computed tomography (CBCT) based augmented fluoroscopy guidance using steerable sheaths may help overcome these shortcomings. The aim of this study was to evaluate feasibility and accuracy of augmented fluoroscopy guided transbronchial MWA with a steerable sheath and without a bronchoscope. Methods: In this prospective study, procedures were performed under general anesthesia. Extra-bronchial lung synthetic targets were placed percutaneously. Target and airways extracted from CBCT, with planned bronchial parking point close to the target were overlaid on live fluoroscopy. Endobronchial navigation was solely performed under augmented fluoroscopy guidance. A 6.5 Fr steerable sheath was parked in the bronchus per plan, and a flexible MWA probe was inserted coaxially then advanced through the bronchus wall towards the target. Final in-target position was confirmed by CBCT. Only one ablation of 100 W-5 min was performed per target. Animals were euthanized and pathology analysis of the lungs was performed. Results: Eighteen targets with a median largest diameter of 9 mm (interquartile range, 7-11 mm) were ablated in 9 pigs. Median needle-target center distance was 2 mm (interquartile range, 0-4 mm), and was higher for lower/middle than for upper lobes [0 mm (interquartile range, 0-4 mm) vs. 4 mm (interquartile range, 3-8 mm), P=0.04]. No severe complications or pneumothorax occurred. Two cases of rib fractures in the ablation zone resolved after medical treatment. Median longest axis of the ablation zone on post-ablation computed tomography was 38 mm (interquartile range, 30-40 mm). Histology showed coagulation necrosis of ablated tissue. Conclusions: Transbronchial MWA under augmented fluoroscopy guidance using a steerable sheath is feasible and accurate.
Li BJ, Kamarck M, Peng QQ, Lim FL, Keller A, Smeets MAM, Mainland J, Wang SJ
Show All Authors

From musk to body odor: Decoding olfaction through genetic variation

PLOS GENETICS 2022 FEB; 18(2):? Article e1009564
Author summaryAlthough genetic diversity in the olfactory receptor repertoire contributes to variation in odor perception, we have few explicit predictions relating variation in a specific OR to perception. Here, we performed genome-wide scans on odor-perception phenotypes for ten odors in 1000 Han Chinese and validated results for six of these odors in an ethnically diverse population (n = 364). We identified novel receptors for musk and human body odor that have implications for how structurally different molecules can have similar odors. Summarizing all the published genetic variation that associates with odor perception, we found that individuals with ancestral versions of the receptors tend to rate the corresponding odor as more intense, supporting the hypothesis that the primate olfactory gene repertoire has degenerated over time. This study of olfactory genetic and perceptual variation will improve our understanding of how the olfactory system encodes odor properties. The olfactory system combines input from multiple receptor types to represent odor information, but there are few explicit examples relating olfactory receptor (OR) activity patterns to odor perception. To uncover these relationships, we performed genome-wide scans on odor-perception phenotypes for ten odors in 1000 Han Chinese and validated results for six of these odors in an ethnically diverse population (n = 364). In both populations, consistent with previous studies, we replicated three previously reported associations (beta-ionone/OR5A1, androstenone/OR7D4, cis-3-hexen-1-ol/OR2J3 LD-band), but not for odors containing aldehydes, suggesting that olfactory phenotype/genotype studies are robust across populations. Two novel associations between an OR and odor perception contribute to our understanding of olfactory coding. First, we found a SNP in OR51B2 that associated with trans-3-methyl-2-hexenoic acid, a key component of human underarm odor. Second, we found two linked SNPs associated with the musk Galaxolide in a novel musk receptor, OR4D6, which is also the first human OR shown to drive specific anosmia to a musk compound. We noticed that SNPs detected for odor intensity were enriched with amino acid substitutions, implying functional changes of odor receptors. Furthermore, we also found that the derived alleles of the SNPs tend to be associated with reduced odor intensity, supporting the hypothesis that the primate olfactory gene repertoire has degenerated over time. This study provides information about coding for human body odor, and gives us insight into broader mechanisms of olfactory coding, such as how differential OR activation can converge on a similar percept.
Mickolajczyk KJ, Olinares PDB, Chait BT, Liu SX, Kapoor TM
Show All Authors

The MIDAS domain of AAA mechanoenzyme Mdn1 forms catch bonds with two different substrates

ELIFE 2022 FEB 11; 11(?):? Article e73534
Catch bonds are a form of mechanoregulation wherein protein-ligand interactions are strengthened by the application of dissociative tension. Currently, the best-characterized examples of catch bonds are between single protein-ligand pairs. The essential AAA (ATPase associated with diverse cellular activities) mechanoenzyme Mdn1 drives at least two separate steps in ribosome biogenesis, using its MIDAS domain to extract the ubiquitin-like (UBL) domain-containing proteins Rsa4 and Ytm1 from ribosomal precursors. However, it must subsequently release these assembly factors to reinitiate the enzymatic cycle. The mechanism underlying the switching of the MIDAS-UBL interaction between strongly and weakly bound states is unknown. Here, we use optical tweezers to investigate the force dependence of MIDAS-UBL binding. Parallel experiments with Rsa4 and Ytm1 show that forces up to similar to 4 pN, matching the magnitude of force produced by AAA proteins similar to Mdn1, enhance the MIDAS domain binding lifetime up to 10-fold, and higher forces accelerate dissociation. Together, our studies indicate that Mdn1's MIDAS domain can form catch bonds with more than one UBL substrate, and provide insights into how mechanoregulation may contribute to the Mdn1 enzymatic cycle during ribosome biogenesis.
Bhattacharya S, Palillo A
Show All Authors

Structural and dynamic studies of the peptidase domain from Clostridium thermocellum PCAT1

PROTEIN SCIENCE 2022 FEB; 31(2):498-512
The export of antimicrobial peptides is mediated by diverse mechanisms in bacterial quorum sensing pathways. One such binary system employed by gram-positive bacteria is the PCAT1 ABC transporter coupled to a cysteine protease. The focus of this study is the N-terminal C39 peptidase (PEP) domain from Clostridium thermocellum PCAT1 that processes its natural substrate CtA by cleaving a conserved -GG- motif to separate the cargo from the leader peptide prior to secretion. In this study, we are primarily interested in elucidating the dynamic and structural determinants of CtA binding and how it is coupled to cleavage efficiency in the PCAT1 PEP domain. To this end, we have characterized CtA interactions with PEP domain and PCAT1 transporter in detergent micelles using solution nuclear magnetic resonance spectroscopy. The bound CtA structure revealed the disordered C-terminal cargo peptide is linked by a sterically hindered cleavage site to a helix docked within a hydrophobic cavity in the PEP domain. The wide range of internal motions detected by amide nitrogen (N-15) relaxation measurements in the free enzyme and substrate-bound complex suggests the binding site is relatively floppy. This flexibility plays a key role in the structural rearrangement necessary to relax steric inhibition in the bound substrate. In conjunction with previously reported PCAT1 structures, we offer fresh insight into the ATP-mediated association between PEP and transmembrane domains as a putative mechanism to optimize peptide cleavage by regulating the width and flexibility of the enzyme active site.
Wang XT, Sacramento CQ, Jockusch S, Chaves OA, Tao CJ, Fintelman-Rodrigues N, Chien MC, Temerozo JR, Li XX, Kumar S, Xie W, Patel DJ, Meyer C, Garzia A, Tuschl T, Bozza PT, Russo JJ, Souza TML, Ju JY
Show All Authors

Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture

COMMUNICATIONS BIOLOGY 2022 FEB 22; 5(1):? Article 154
In this paper, the hepatitis C virus inhibitors Pibrentasvir and Ombitasvir are found to inhibit the SARS-CoV-2 exonuclease and are shown to have therapeutic potential when combined with SARS-CoV-2 polymerase inhibitors in viral cell cultures. SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.
Palacios-Reyes D, Yamazaki-Nakashimada MA, Castano-Jaramillo L, Roman-Montes CM, Gonzalez-Lara MF, Scheffler-Mendoza S, Costta-Michuy A, Bustamante J, Blancas-Galicia L
Show All Authors

Pulmonary Geotrichosis in Chronic Granulomatous Disease

JOURNAL OF INVESTIGATIONAL ALLERGOLOGY AND CLINICAL IMMUNOLOGY 2022; 32(4):306-+
Shenhav L, Azad MB
Show All Authors

Using Community Ecology Theory and Computational Microbiome Methods To Study Human Milk as a Biological System

MSYSTEMS 2022 JAN-FEB; 7(1):? Article e01132-21
Human milk is a complex and dynamic biological system that has evolved to optimally nourish and protect human infants. Yet, according to a recent priority -setting review, "our current understanding of human milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation" (P. Christian et al., Am J Clin Nutr 113:1063-1072, 2021, https://doi.org/10.1093/ajcn/nqab075). We attribute this critical knowledge gap to three major reasons as follows. (i) Studies have typically examined each subsystem of the mother-milk-infant "triad" in isolation and often focus on a single element or component (e.g., maternal lactation physiology or milk microbiome or milk oligosaccharides or infant microbiome or infant gut physiology). This undermines our ability to develop comprehensive representations of the interactions between these elements and study their response to external perturbations. (ii) Multiomics studies are often cross-sectional, presenting a snapshot of milk composition, largely ignoring the temporal variability during lactation. The lack of temporal resolution precludes the characterization and inference of robust interactions between the dynamic subsystems of the triad. (iii) We lack computational methods to represent and decipher the complex ecosystem of the mother-milk-infant triad and its environment. In this review, we advocate for longitudinal multiomics data collection and demonstrate how incorporating knowledge gleaned from microbial community ecology and computational methods developed for microbiome research can serve as an anchor to advance the study of human milk and its many components as a "system within a system."