Publications search

Found 37684 matches. Displaying 851-860
Broennimann K, Ricardo-Lax I, Adler J, Shaul Y
Show All Authors

Evidence for a Hepatitis B Virus Short RNA Fragment Directly Targeting the Cellular RRM2 Gene

CELLS 2022 JUL; 11(14):? Article 2248
The hepatitis B virus (HBV) is one of the smallest but most highly infectious human pathogens. With a DNA genome of only 3.2 kb and only four genes, HBV successfully completes its life cycle by using intricate processes to hijack the host machinery. HBV infects non-dividing liver cells in which dNTPs are limited. As a DNA virus, HBV requires dNTPs for its replication. HBV induces the ATR-mediated cellular DNA damage response pathway to overcome this constraint. This pathway upregulates R2 (RRM2) expression in generating an active RNR holoenzyme catalyzing de novo dNTP synthesis. Previously we reported that ERE, a small RNA fragment within the HBx ORF, is sufficient to induce R2 upregulation. Interestingly, there is high sequence similarity between ERE and a region within the R2 5 ' UTR that we named R2-box. Here, we established a mutant cell line in the R2-box region of the R2 gene using CRISPR-Cas9 technology to investigate the R2 regulation by ERE. This cell line expresses a much lower R2 level than the parental cell line. Interestingly, the HBV infection and life cycle were severely impaired. These cells became permissive to HBV infection upon ectopically R2 expression. These results validate the requirement of the R2 gene expression for HBV replication. Remarkably, the R2-box mutated cells became ERE refractory, suggesting that the homology region between ERE and R2 gene is critical for ERE-mediated R2 upregulation. Thus, along with the induction of the ATR pathway of the DNA damage response, ERE might also directly target the R2 gene via the R2-box.
Amelianchik A, Sweetland-Martin L, Norris EH
Show All Authors

The effect of dietary fat consumption on Alzheimer's disease pathogenesis in mouse models

TRANSLATIONAL PSYCHIATRY 2022 JUL 22; 12(1):? Article 293
Alzheimer's disease (AD) is a fatal cognitive disorder with proteinaceous brain deposits, neuroinflammation, cerebrovascular dysfunction, and extensive neuronal loss over time. AD is a multifactorial disease, and lifestyle factors, including diet, are likely associated with the development of AD pathology. Since obesity and diabetes are recognized as risk factors for AD, it might be predicted that a high-fat diet (HFD) would worsen AD pathology. However, modeling HFD-induced obesity in AD animal models has yielded inconclusive results. Some studies report a deleterious effect of HFD on A beta accumulation, neuroinflammation, and cognitive function, while others report that HFD worsens memory without affecting AD brain pathology. Moreover, several studies report no major effect of HFD on AD-related phenotypes in mice, while other studies show that HFD might, in fact, be protective. The lack of a clear association between dietary fat consumption and AD-related pathology and cognitive function in AD mouse models might be explained by experimental variations, including AD mouse model, sex and age of the animals, composition of the HFD, and timeline of HFD consumption. In this review, we summarize recent studies that aimed at elucidating the effect of HFD-induced obesity on AD-related pathology in mice and provide an overview of the factors that may have contributed to the results reported in these studies. Based on the heterogeneity of these animal model studies and given that the human population itself is quite disparate, it is likely that people will benefit most from individualized nutritional plans based on their medical history and clinical profiles.
Rosain J, Bernasconi A, Prieto E, Caputi L, Le Voyer T, Buda G, Marti M, Bohlen J, Neehus AL, Castanos C, Gallagher R, Dorgham K, Oleastro M, Perez L, Danielian S, Dipierri JE, Casanova JL, Bustamante J, Villa M
Show All Authors

Pulmonary Alveolar Proteinosis and Multiple Infectious Diseases in a Child with Autosomal Recessive Complete IRF8 Deficiency

JOURNAL OF CLINICAL IMMUNOLOGY 2022 JUL; 42(5):975-985
Background Autosomal recessive (AR) complete IRF8 deficiency is a rare severe inborn error of immunity underlying an absence of blood myeloid mononuclear cells, intracerebral calcifications, and multiple infections. Only three unrelated patients have been reported. Materials and Methods We studied an Argentinian child with multiple infectious diseases and severe pulmonary alveolar proteinosis (PAP). We performed whole-exome sequencing (WES) and characterized his condition by genetic, immunological, and clinical means. Results The patient was born and lived in Argentina. He had a history of viral pulmonary diseases, disseminated disease due to bacillus Calmette-Guerin (BCG), PAP, and cerebral calcifications. He died at the age of 10 months from refractory PAP. WES identified two compound heterozygous variants in IRF8: c.55del and p.R111*. In an overexpression system, the p.R111* cDNA was loss-of-expression, whereas the c.55del cDNA yielded a protein with a slightly lower molecular weight than the wild-type protein. The mutagenesis of methionine residues downstream from c.55del revealed a re-initiation of translation. However, both variants were loss-of-function in a luciferase assay, suggesting that the patient had AR complete IRF8 deficiency. The patient had no blood monocytes or dendritic cells, associated with neutrophilia, and normal counts of NK and other lymphoid cell subsets. Conclusion We describe the fourth patient with AR complete IRF8 deficiency. This diagnosis should be considered in children with PAP, which is probably due to the defective development or function of alveolar macrophages.
Piserchio A, Isiorho EA, Long K, Bohanon AL, Kumar EA, Will N, Jeruzalmi D, Dalby KN, Ghose R
Show All Authors

Structural basis for the calmodulin-mediated activation of eukaryotic elongation factor 2 kinase

SCIENCE ADVANCES 2022 JUL 8; 8(27):? Article eabo2039
Translation is a tightly regulated process that ensures optimal protein quality and enables adaptation to energy/nutrient availability. The alpha-kinase eukaryotic elongation factor 2 kinase (eEF-2K), a key regulator of translation, specifically phosphorylates the guanosine triphosphatase eEF-2, thereby reducing its affinity for the ribosome and suppressing the elongation phase of protein synthesis. eEF-2K activation requires calmodulin binding and autophosphorylation at the primary stimulatory site, T348. Biochemical studies predict a calmodulin-mediated activation mechanism for eEF-2K distinct from other calmodulin-dependent kinases. Here, we resolve the atomic details of this mechanism through a 2.3-angstrom crystal structure of the heterodimeric complex of calmodulin and the functional core of eEF-2K (eEF-2K(TR)). This structure, which represents the activated T348-phosphorylated state of eEF-2K(TR), highlights an intimate association of the kinase with the calmodulin C-lobe, creating an "activation spine" that connects its amino-terminal calmodulin-targeting motif to its active site through a conserved regulatory element.
Ellis SJ, Fuchs E
Show All Authors

Relocation keeps up the numbers

NATURE 2022 JUL 21; 607(7919):451-452
A dynamic mode of stem-cell regulation has been discovered. Intestinal stem cells use migration to maintain a large pool of multifunctional cells, perhaps endowing the organ with robust responses to injury.
Sarfo FS, Dompreh A, Asibey SO, Boateng R, Weinreich F, Kuffour EO, Norman B, Di Cristanziano V, Frickmann H, Feldt T, Eberhardt KA
Show All Authors

The Clinical Features and Immunological Signature of Cyclospora cayetanensis Co-Infection among People Living with HIV in Ghana

MICROORGANISMS 2022 JUL; 10(7):? Article 1407
Background: There is a paucity of information on the contemporary burden, disease patterns, and immunological profile of people living with HIV who are co-infected with C. cayetanensis in the post-antiretroviral therapy era. Methods: For this cross-sectional study, stool samples of 640 HIV-positive and 83 HIV-negative individuals in Ghana were tested for C. cayetanensis. Additionally, sociodemographic parameters, clinical symptoms, medical drug intake, and immunological parameters were assessed. Results: The prevalence of C. cayetanensis was 8.75% (n = 56) in HIV-positive and 1.20% (n = 1) in HIV-negative participants (p = 0.015). Within the group of HIV-positive participants, the prevalence reached 13.6% in patients with CD4+ T cell counts below 200 cells/mu l. Frequencies of the clinical manifestations of weight loss and diarrheal disease were significantly higher in patients with C. cayetanensis compared to those without co-infection (36.36% vs. 22.59%, p = 0.034 and 20.00% vs. 4.90%, p < 0.001, respectively). The expression of markers of immune activation and exhaustion of T lymphocyte sub-populations was significantly elevated in patients colonized with C. cayetanensis. Conclusions: In the modern post-combined antiretroviral therapy (cART) era, the acquisition of C. cayetanensis among PLWH in Ghana is driven largely by the immunosuppression profile characterized by high expression of markers of immune activation and immune exhaustion.
Bourne CM, Mun SS, Dao T, Aretz ZEH, Molvi Z, Gejman RS, Daman A, Takata K, Steidl C, Klatt MG, Scheinberg DA
Show All Authors

Unmasking the suppressed immunopeptidome of EZH2-mutated diffuse large B-cell lymphomas through combination drug treatment

BLOOD ADVANCES 2022 JUL 26; 6(14):4107-4121
Exploring the repertoire of peptides presented on major histocompatibility complexes (MHCs) helps identify targets for immunotherapy in many hematologic malignancies. However, there is a paucity of such data for diffuse large B-cell lymphomas (DLBCLs), which might be explained by the profound downregulation of MHC expression in many DLBCLs, and in particular in the enhancer of zeste homolog 2 (EZH2)-mutated subgroup. Epigenetic drug treatment, especially in the context of interferon-gamma (IFN-gamma), restored MHC expression in DLBCL. In DLBCL, peptides presented on MHCs were identified via mass spectrometry after treatment with tazemetostat or decitabine alone or in combination with IFN-gamma. Such treatment synergistically increased the expression of MHC class I surface proteins up to 50-fold and the expression of class II surface proteins up to threefold. Peptides presented on MHCs increased to a similar extent for both class I and class II MHCs. Overall, these treatments restored the diversity of the immunopeptidome to levels described in healthy B cells for 2 of 3 cell lines and allowed the systematic search for new targets for immunotherapy. Consequently, we identified multiple MHC ligands from the regulator of G protein signaling 13 (RGS13) and E2F transcription factor 8 (E2F8) on different MHC alleles, none of which have been described in healthy tissues and therefore represent tumor-specific MHC ligands that are unmasked only after drug treatment. Overall, our results show that EZH2 inhibition in combination with decitabine and IFN-gamma can expand the repertoire of MHC ligands presented on DLBCLs by revealing suppressed epitopes, thus allowing the systematic analysis and identification of new potential immunotherapy targets.
Naik S, Fuchs E
Show All Authors

Inflammatory memory and tissue adaptation in sickness and in health

NATURE 2022 JUL 14; 607(7918):249-+
Our body has a remarkable ability to remember its past encounters with allergens, pathogens, wounds and irritants, and to react more quickly to the next experience. This accentuated sensitivity also helps us to cope with new threats. Despite maintaining a state of readiness and broadened resistance to subsequent pathogens, memories can also be maladaptive, leading to chronic inflammatory disorders and cancers. With the ever-increasing emergence of new pathogens, allergens and pollutants in our world, the urgency to unravel the molecular underpinnings of these phenomena has risen to new heights. Here we reflect on how the field of inflammatory memory has evolved, since 2007, when researchers realized that non-specific memory is contained in the nucleus and propagated at the epigenetic level. We review the flurry of recent discoveries revealing that memory is not just a privilege of the immune system but also extends to epithelia of the skin, lung, intestine and pancreas, and to neurons. Although still unfolding, epigenetic memories of inflammation have now been linked to possible brain disorders such as Alzheimer disease, and to an elevated risk of cancer. In this Review, we consider the consequences-good and bad-of these epigenetic memories and their implications for human health and disease.
Bielopolski D, Wenziger C, Steinmetz T, Zvi BR, Kalantar-Zadeh K, Streja E
Show All Authors

Novel Protein to Phosphorous Ratio Score Predicts Mortality in Hemodialysis Patients

JOURNAL OF RENAL NUTRITION 2022 JUL; 32(4):450-457
Objective: Lowering serum phosphorus in people on hemodialysis may improve their survival. However, prior studies have shown that restricting dietary protein intake, a major source of phosphorus, is associated with higher mortality. We hypothesized that a novel metric that incorporates both these values commensurately can improve survival prediction. Methods: We used serum phosphorous and normalized protein catabolic rate (nPCR), a surrogate of dietary protein intake, to form a new metric R that was used to examine the associations with mortality in 63,016 people on hemodialysis (HD) of one year after treatment initiation. Survival models were adjusted for case-mix, malnutrition-inflammation cachexia syndrome (MICS), and residual kidney func-tion (RKF). Results: Individuals treated with hemodialysis were divided into five groups in accordance with R value. Group 1 included sick individuals with high phosphorous and low nPCR. Group 5 included individuals with low phosphorous and high nPCR. After 1-year follow-up, survival difference between the groups reflected R value, where an increase in R was associated with improved survival. The association of R with mortality was strengthened by adjustment in demographic variables and attenuated after adjustment to MICS. Mortality associations in accordance with R were not influenced by residual kidney function (RKF). Conclusion: The novel protein to phosphorus ratio score R predicts mortality in people on dialysis, probably reflecting both nutrition and inflammation state independent of RKF. The metric enables better phosphorus monitoring, although adequate dietary protein intake is ensured and may improve the prediction of outcomes in the clinical setting. (c) 2021 by the National Kidney Foundation, Inc. All rights reserved.
Kannan A, Suomalainen M, Volle R, Bauer M, Amsler M, Trinh HV, Vavassori S, Schmid JP, Vilhena G, Marin-Gonzalez A, Perez R, Franceschini A, von Mering C, Hemmi S, Greber UF
Show All Authors

Sequence-Specific Features of Short Double-Strand, Blunt-End RNAs Have RIG-I- and Type 1 Interferon-Dependent or -Independent Anti-Viral Effects

VIRUSES-BASEL 2022 JUL; 14(7):? Article 1407
Pathogen-associated molecular patterns, including cytoplasmic DNA and double-strand (ds)RNA trigger the induction of interferon (IFN) and antiviral states protecting cells and organisms from pathogens. Here we discovered that the transfection of human airway cell lines or non-transformed fibroblasts with 24mer dsRNA mimicking the cellular micro-RNA (miR)29b-1* gives strong anti-viral effects against human adenovirus type 5 (AdV-C5), influenza A virus X31 (H3N2), and SARS-CoV-2. These anti-viral effects required blunt-end complementary RNA strands and were not elicited by corresponding single-strand RNAs. dsRNA miR-29b-1* but not randomized miR-29b-1* mimics induced IFN-stimulated gene expression, and downregulated cell adhesion and cell cycle genes, as indicated by transcriptomics and IFN-I responsive Mx1-promoter activity assays. The inhibition of AdV-C5 infection with miR-29b-1* mimic depended on the IFN-alpha receptor 2 (IFNAR2) and the RNA-helicase retinoic acid-inducible gene I (RIG-I) but not cytoplasmic RNA sensors MDA5 and ZNFX1 or MyD88/TRIF adaptors. The antiviral effects of miR29b-1* were independent of a central AUAU-motif inducing dsRNA bending, as mimics with disrupted AUAU-motif were anti-viral in normal but not RIG-I knock-out (KO) or IFNAR2-KO cells. The screening of a library of scrambled short dsRNA sequences identified also anti-viral mimics functioning independently of RIG-I and IFNAR2, thus exemplifying the diverse anti-viral mechanisms of short blunt-end dsRNAs.