Publications search

Found 37684 matches. Displaying 641-650
Johns E, Ma YL, Louphrasitthiphol P, Peralta C, Hunter MV, Raymond JH, Molina...
Show All Authors

The Lipid Droplet Protein DHRS3 Is a Regulator of Melanoma Cell State

PIGMENT CELL & MELANOMA RESEARCH 2024 2024 OCT 31; ?(?):?
Lipid droplets are fat storage organelles composed of a protein envelope and lipid-rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid-mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
Edgar JE, Bournazos S
Show All Authors

Fc-FcγR interactions during infections: From neutralizing antibodies to antib...

IMMUNOLOGICAL REVIEWS 2024 2024 SEP 13; ?(?):?
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fc gamma receptors (Fc gamma Rs) on effector leukocytes. Fc-Fc gamma R interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific Fc gamma R pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Arias AA, Neehus AL, Ogishi M, Meynier V, Krebs A, Lazarov T, Lee AM, Arango-...
Show All Authors

Tuberculosis in otherwise healthy adults with inherited TNF deficiency

NATURE 2024 2024 AUG 28; ?(?):?
Severe defects in human IFN gamma immunity predispose individuals to both Bacillus Calmette-Gu & eacute;rin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFN gamma. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Gu & eacute;rin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but seems to be largely redundant physiologically.
Czarnowicki T, David E, Yamamura K, Han J, He H, Pavel AB, Glickman J, Ericks...
Show All Authors

Evolution of pathologic B-cell subsets and serum environment-specific sIgEs i...

ALLERGY 2024 2024 JUL 14; ?(?):?
BackgroundWhile B-cells have historically been implicated in allergy development, a growing body of evidence supports their role in atopic dermatitis (AD). B-cell differentiation across ages in AD, and its relation to disease severity scores, has not been well defined. ObjectiveTo compare the frequency of B-cell subsets in blood of 0-5, 6-11, 12-17, and >= 18 years old patients with AD versus age-matched controls. MethodsFlow cytometry was used to measure B-cell subset frequencies in the blood of 27 infants, 17 children, 11 adolescents, and 31 adults with moderate-to-severe AD and age-matched controls. IgD/CD27 and CD24/CD38 core gating systems and an 11-color flow cytometry panel were used to determine frequencies of circulating B-cell subsets. Serum total and allergen-specific IgE (sIgEs) levels were measured using ImmunoCAP (R). ResultsAdolescents with AD had lower frequencies of major B-cells subsets (p < .03). CD23 expression increased with age and was higher in AD compared to controls across all age groups (p < .04). In AD patients, multiple positive correlations were observed between IL-17-producing T-cells and B-cell subsets, most significantly non-switched memory (NSM) B-cells (r = .41, p = .0005). AD severity positively correlated with a list of B-cell subsets (p < .05). IL-9 levels gradually increased during childhood, reaching a peak in adolescence, paralleling allergen sensitization, particularly in severe AD. Principal component analysis of the aggregated environmental sIgE data showed that while controls across all ages tightly clustered together, adolescents with AD demonstrated distinct clustering patterns relative to controls. ConclusionsMultiple correlations between B-cells and T-cells, as well as disease severity measures, suggest a complex interplay of immune pathways in AD. Unique B-cell signature during adolescence, with concurrent allergen sensitization and IL-9 surge, point to a potentially wider window of opportunity to implement interventions that may prevent the progression of the atopic march.
Kosse C, Ivanov J, Knight Z, Pellegrino K, Friedman J
Show All Authors

A subcortical feeding circuit linking an interoceptive node to jaw movement

NATURE 2024 2024 OCT 23; ?(?):?
The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood1-3. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMHBDNF neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMHBDNF inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMHBDNF neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMHBDNF activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc -> VMHBDNF -> pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner. A subcortical circuit that regulates food consumption in mice is described, involving neurons in the ventromedial hypothalamus that are directly linked to motor centres that regulate feeding and jaw movements.
Sharaf A, Nesengani LT, Hayah I, Kuja JO, Mdyogolo S, Omotoriogun TC, Odogwu ...
Show All Authors

Establishing African genomics and bioinformatics programs through annual regi...

NATURE GENETICS 2024 2024 JUL 8; ?(?):?
The African BioGenome Project (AfricaBP) Open Institute for Genomics and Bioinformatics aims to overcome barriers to capacity building through its distributed African regional workshops and prioritizes the exchange of grassroots knowledge and innovation in biodiversity genomics and bioinformatics. In 2023, we implemented 28 workshops on biodiversity genomics and bioinformatics, covering 11 African countries across the 5 African geographical regions. These regional workshops trained 408 African scientists in hands-on molecular biology, genomics and bioinformatics techniques as well as the ethical, legal and social issues associated with acquiring genetic resources. Here, we discuss the implementation of transformative strategies, such as expanding the regional workshop model of AfricaBP to involve multiple countries, institutions and partners, including the proposed creation of an African digital database with sequence information relating to both biodiversity and agriculture. This will ultimately help create a critical mass of skilled genomics and bioinformatics scientists across Africa. The African BioGenome Project (AfricaBP) Open Institute for Genomics and Bioinformatics established a series of regional workshops in 2023 to exchange knowledge and overcome barriers, which could serve as a model for other scientific communities.
Hasegawa A, Matsuda KM, Ogishi M, Miura S, Yoshizaki A, Chaldebas M, Milisavl...
Show All Authors

A case of Darier's disease with a missense mutation in exon 8 of ATP2A2

JOURNAL OF DERMATOLOGY 2024 2024 SEP 24; ?(?):?
Stewart KS, Abdusselamoglu MD, Tierney MT, Gola A, Hur YH, Gonzales KAU, Yuan...
Show All Authors

Stem cells tightly regulate dead cell clearance to maintain tissue fitness

NATURE 2024 2024 AUG 21; ?(?):?
Billions of cells are eliminated daily from our bodies(1-4). Although macrophages and dendritic cells are dedicated to migrating and engulfing dying cells and debris, many epithelial and mesenchymal tissue cells can digest nearby apoptotic corpses(1-4). How these non-motile, non-professional phagocytes sense and eliminate dying cells while maintaining their normal tissue functions is unclear. Here we explore the mechanisms that underlie their multifunctionality by exploiting the cyclical bouts of tissue regeneration and degeneration during hair cycling. We show that hair follicle stem cells transiently unleash phagocytosis at the correct time and place through local molecular triggers that depend on both lipids released by neighbouring apoptotic corpses and retinoids released by healthy counterparts. We trace the heart of this dual ligand requirement to RAR gamma-RXR alpha, whose activation enables tight regulation of apoptotic cell clearance genes and provides an effective, tunable mechanism to offset phagocytic duties against the primary stem cell function of preserving tissue integrity during homeostasis. Finally, we provide functional evidence that hair follicle stem cell-mediated phagocytosis is not simply redundant with professional phagocytes but rather has clear benefits to tissue fitness. Our findings have broad implications for other non-motile tissue stem or progenitor cells that encounter cell death in an immune-privileged niche.
Frank DD, Kronauer DJC
Show All Authors

The Budding Neuroscience of Ant Social Behavior

ANNUAL REVIEW OF NEUROSCIENCE 2024; 47(?):167-185
Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.
Duy PQ, Jux B, Zhao SJ, Mekbib KY, Dennis E, Dong WL, Nelson-Williams C, Meht...
Show All Authors

TRIM71 mutations cause a neurodevelopmental syndrome featuring ventriculomega...

BRAIN 2024 2024 OCT 15; ?(?):?
Congenital hydrocephalus, characterized by cerebral ventriculomegaly, is one of the most common reasons for paediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate congenital hydrocephalus risk gene; however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome.Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated congenital hydrocephalus (totalling 2697 parent-proband trios and 8091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, congenital hydrocephalus, developmental delay, dysmorphic features and other structural brain defects, including corpus callosum dysgenesis and white matter hypoplasia.Eight unrelated patients were found to harbour arginine variants, including two recurrent missense DNVs, at homologous positions in RPXGV motifs of different NHL domains. Seven patients with rare, damaging, unphased or transmitted variants of uncertain significance were also identified. NHL-domain variants of TRIM71 exhibited impaired binding to the canonical TRIM71 target CDKN1A; other variants failed to direct the subcellular localization of TRIM71 to processing bodies. Single-cell transcriptomic analysis of human embryos revealed expression of TRIM71 in early first-trimester neural stem cells of the brain.These data show TRIM71 is essential for human brain morphogenesis and that TRIM71 mutations cause a novel neurodevelopmental syndrome that we term 'TRIM71-associated developmental disorders (TADD)', featuring variable ventriculomegaly, congenital hydrocephalus and other structural brain defects. Duy et al. provide evidence that mutations in TRIM71-a known regulator of stem cell fate and candidate congenital hydrocephalus risk gene-cause a novel form of syndromic congenital hydrocephalus with brain abnormalities and developmental delay.