Publications search

Found 37684 matches. Displaying 381-390
Barbelanne M, Lu Y, Kumar K, Zhang XX, Li CM, Park K, Warner A, Xu XZS, Shaha...
Show All Authors

C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) fun...

SCIENTIFIC REPORTS 2024 NOV 16; 14(1):? Article 28347
Primary (non-motile) cilia represent structurally and functionally diverse organelles whose roles as specialized cellular antenna are central to animal cell signaling pathways, sensory physiology and development. An ever-growing number of ciliary proteins, including those found in vertebrate photoreceptors, have been uncovered and linked to human disorders termed ciliopathies. Here, we demonstrate that an evolutionarily-conserved PPEF-family serine-threonine phosphatase, not functionally linked to cilia in any organism but associated with rhabdomeric (non-ciliary) photoreceptor degeneration in the Drosophila rdgC (retinal degeneration C) mutant, is a bona fide ciliary protein in C. elegans. The nematode protein, PEF-1, depends on transition zone proteins, which make up a 'ciliary gate' in the proximal-most region of the cilium, for its compartmentalization within cilia. Animals lacking PEF-1 protein function display structural defects to several types of cilia, including potential degeneration of microtubules. They also exhibit anomalies to cilium-dependent behaviors, including impaired responses to chemical, temperature, light, and noxious CO2 stimuli. Lastly, we demonstrate that PEF-1 function depends on conserved myristoylation and palmitoylation signals. Collectively, our findings broaden the role of PPEF proteins to include cilia, and suggest that the poorly-characterized mammalian PPEF1 and PPEF2 orthologs may also have ciliary functions and thus represent ciliopathy candidates.
Wang Y, Zheng P, Cheng YC, Wang ZK, Aravkin A
Show All Authors

WENDY: Covariance dynamics based gene regulatory network inference

MATHEMATICAL BIOSCIENCES 2024 NOV; 377(?):? Article 109284
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. Fora widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
Short B
Show All Authors

A new stress test for ryanodine receptors

JOURNAL OF GENERAL PHYSIOLOGY 2024 NOV 19; 156(12):? Article e202413716
JGP study (Steinz et al. https://doi.org/10.1085/jgp.202313515) reveals that oxidative stress can induce stable posttranslational modifications of RyR1 that increase the channel's open probability and could therefore disrupt muscle contractility.
Lercher A, Cheong JG, Bale MJ, Jiang CY, Hoffmann HH, Ashbrook AW, Lewy T, Yi...
Show All Authors

Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 i...

IMMUNITY 2024 NOV 12; 57(11):?
Pathogen encounter can result in epigenetic remodeling that shapes disease caused by heterologous pathogens. Here, we examined innate immune memory in the context of commonly circulating respiratory viruses. Single-cell analyses of airway-resident immune cells in a disease-relevant murine model of SARS-CoV-2 recovery revealed epigenetic reprogramming in alveolar macrophages following infection. Post-COVID-19 human monocytes exhibited similar epigenetic signatures. In airway-resident macrophages, past SARS-CoV-2 infection increased activity of type I interferon (IFN-I)-related transcription factors and epigenetic poising of antiviral genes. Viral pattern recognition and canonical IFN-I signaling were required for the establishment of this innate immune memory and augmented secondary antiviral responses. Antiviral innate immune memory mounted by airway-resident macrophages post-SARS-CoV-2 was necessary and sufficient to ameliorate secondary disease caused by influenza A virus and curtailed hyperinflammatory dysregulation and mortality. Our findings provide insights into antiviral innate immune memory in the airway that may facilitate the development of broadly effective therapeutic strategies.
Catanese J, Murakami TC, Catto A, Kenny PJ, Ibañez-Tallon I
Show All Authors

Precise 3D Localization of Intracerebral Implants Using a Simple Brain Cleari...

JOURNAL OF INTEGRATIVE NEUROSCIENCE 2024 NOV 20; 23(11):? Article 207
Background: Precise localization of intracerebral implants in rodent brains is required for physiological and behavioral studies, particularly if targeting deep brain nuclei. Traditional histological methods, based on manual estimation through sectioning can introduce errors and complicate data interpretation.Methods: Here, we introduce an alternative method based on recent advances in tissue-clearing techniques and light-sheet fluorescence microscopy. This method uses a simplified recipe of the Clear, Unobstructed Brain/Body Imaging Cocktails and Computational Analysis (CUBIC) method, which is a rapid clearing procedure using an aqueous-based solution compatible with fluorescence and fluorescence markers. We demonstrate the utility of this approach in anesthetized transgenic mice expressing channelrhodopsin-2 (ChR2) and enhanced yellow fluorescent fusion (EYFP) protein under the choline acetyltransferase (ChAT) promoter/enhancer regions (ChAT-ChR2-EYFP mice) with implanted linear silicon optrode probes into the midbrain interpeduncular nucleus (IPN).Results: By applying the red fluorescent DiD' dye (DiIC18(5) solid (1,1 '-Dioctadecyl-3,3,3 ',3 '-Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt) to the electrode surface, we precisely visualize the electrode localization in the IPN of ChAT-ChR2-EYFP mice. Three-dimensional brain videos from different orientations highlight the potential of this method. Optogenetic responses recorded from electrodes placed in the IPN validate these findings.Conclusions: This method allows for precise localization of brain implantation sites in transgenic mice expressing cell-specific fluorescence markers. It enables virtual brain slicing in any orientation, making it a useful tool for functional studies in mice.
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL,...
Show All Authors

Distinct pathways for evolution of enhanced receptor binding and cell entry i...

PLOS PATHOGENS 2024 NOV; 20(11):? Article e1012704
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014-CoV, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the S1 N-terminal domain, uncovered through the rescue and serial passage of a virus bearing the FPPR substitution, further enhanced spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, ...
Show All Authors

Search for Soft Unclustered Energy Patterns in Proton-Proton Collisions at 13...

PHYSICAL REVIEW LETTERS 2024 NOV 5; 133(19):? Article 191902
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb(-1) of proton-proton collision data at root s = 13 TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays.
Arango-Franco CA, Ogishi M, Unger S, Delmonte OM, Orrego JC, Yatim A, Velasqu...
Show All Authors

IL-7-dependent and -independent lineages of IL-7R-dependent human T cells

JOURNAL OF CLINICAL INVESTIGATION 2024 OCT 1; 134(19):? Article e180251
Infants with biallelic IL7R loss-of-function variants have severe combined immune deficiency (SCID) characterized by the absence of autologous T lymphocytes, but normal counts of circulating B and NK cells (T-B+NK+ SCID). We report 6 adults (aged 22 to 59 years) from 4 kindreds and 3 ancestries (Colombian, Israeli Arab, Japanese) carrying homozygous IL7 loss-of-function variants resulting in combined immunodeficiency (CID). Deep immunophenotyping revealed relatively normal counts and/or proportions of myeloid, B, NK, and innate lymphoid cells. By contrast, the patients had profound T cell lymphopenia, with low proportions of innate-like adaptive mucosal-associated invariant T and invariant NK T cells. They also had low blood counts of T cell receptor (TCR) excision circles, recent thymic emigrant T cells and naive CD4(+) T cells, and low overall TCR repertoire diversity, collectively indicating impaired thymic output. The proportions of effector memory CD4(+) and CD8(+) T cells were high, indicating IL-7-independent homeostatic T cell proliferation in the periphery. Intriguingly, the proportions of other T cell subsets, including TCR gamma delta(+) T cells and some TCR alpha beta(+) T cell subsets (including Th1, Tfh, and Treg) were little affected. Peripheral CD4(+) T cells displayed poor proliferation, but normal cytokine production upon stimulation with mitogens in vitro. Thus, inherited IL-7 deficiency impairs T cell development less severely and in a more subset-specific manner than IL-7R deficiency. These findings suggest that another IL-7R-binding cytokine, possibly thymic stromal lymphopoietin, governs an IL-7-independent pathway of human T cell development.
Ryder EL, Nasir N, Durgan AEO, Jenkyn-Bedford M, Tye S, Zhang XD, Wu Q
Show All Authors

Structural mechanisms of SLF1 interactions with Histone H4 and RAD18 at the s...

NUCLEIC ACIDS RESEARCH 2024 OCT 3; 52(20):12405-12421
DNA damage that obstructs the replication machinery poses a significant threat to genome stability. Replication-coupled repair mechanisms safeguard stalled replication forks by coordinating proteins involved in the DNA damage response (DDR) and replication. SLF1 (SMC5-SMC6 complex localization factor 1) is crucial for facilitating the recruitment of the SMC5/6 complex to damage sites through interactions with SLF2, RAD18, and nucleosomes. However, the structural mechanisms of SLF1's interactions are unclear. In this study, we determined the crystal structure of SLF1's ankyrin repeat domain bound to an unmethylated histone H4 tail, illustrating how SLF1 reads nascent nucleosomes. Using structure-based mutagenesis, we confirmed a phosphorylation-dependent interaction necessary for a stable complex between SLF1's tandem BRCA1 C-Terminal domain (tBRCT) and the phosphorylated C-terminal region (S442 and S444) of RAD18. We validated a functional role of conserved phosphate-binding residues in SLF1, and hydrophobic residues in RAD18 that are adjacent to phosphorylation sites, both of which contribute to the strong interaction. Interestingly, we discovered a DNA-binding property of this RAD18-binding interface, providing an additional domain of SLF1 to enhance binding to nucleosomes. Our results provide critical structural insights into SLF1's interactions with post-replicative chromatin and phosphorylation-dependent DDR signalling, enhancing our understanding of SMC5/6 recruitment and/or activity during replication-coupled DNA repair. Graphical Abstract
Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, ...
Show All Authors

Measurement of the production cross section of a Higgs boson with large trans...

PHYSICS LETTERS B 2024 OCT; 857(?):? Article 138964
A measurement of the production cross section of a Higgs boson with transverse momentum greater than 250 GeV is presented where the Higgs boson decays to a pair of tau leptons. It is based on proton-proton collision data collected by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb(-1). Because of the large transverse momentum of the Higgs boson the tau leptons from its decays are boosted and produced spatially close, with their decay products overlapping. Therefore, a dedicated algorithm was developed to reconstruct and identify them. The observed (expected) significance of the measured signal with respect to the standard model background-only hypothesis is 3.5 (2.2) standard deviations. The product of the production cross section and branching fraction is measured to be 1.64(-0.54)(+0.68) times the standard model expectation. The fiducial differential production cross section is also measured as functions of the Higgs boson and leading jet transverse momenta. This measurement extends the probed large-transverse-momentum region in the tau tau final state beyond 600 GeV.