Publications search

Found 37684 matches. Displaying 1381-1390
Kubiak JM, Murphy EA, Yee J, Cagino KA, Friedlander RL, Glynn SM, Matthews KC, Jurkiewicz M, Sukhu AC, Zhao Z, Prabhu M, Riley LE, Yang YJ
Show All Authors

Severe acute respiratory syndrome coronavirus 2 serology levels in pregnant women and their neonates

AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY 2021 JUL; 225(1):? Article 73.e1-e7
BACKGROUND: Pregnant women and their neonates represent 2 vulnerable populations with an interdependent immune system that are highly susceptible to viral infections. The immune response of pregnant women to severe acute respiratory syndrome coronavirus 2 and the interplay of how the maternal immune response affects the neonatal passive immunity have not been studied systematically. OBJECTIVE: We characterized the serologic response in pregnant women and studied how this serologic response correlates with the maternal clinical presentation and with the rate and level of passive immunity that the neonate received from the mother. STUDY DESIGN: Women who gave birth and who tested positive for immunoglobulin M or immunoglobulin G against severe acute respiratory syndrome coronavirus 2 using semiquantitative detection in a New York City hospital between March 22, 2020, and May 31, 2020, were included in this study. A retrospective chart review of the cases that met the inclusion criteria was conducted to determine the presence of coronavirus disease 2019 symptoms and the use of oxygen support. Serology levels were compared between the symptomatic and asymptomatic patients using a Welch 2 sample t test. Further chart review of the same patient cohort was conducted to identify the dates of self-reported onset of coronavirus disease 2019 symptoms and the timing of the peak immunoglobulin M and immunoglobulin G antibody levels after symptom onset was visualized using local polynomial regression smoothing on log(2)-scaled serologic values. To study the neonatal serology response, umbilical cord blood samples of the neonates born to the subset of serology positive pregnant women were tested for serologic antibody responses. The maternal antibody levels of serology positive vs the maternal antibody levels of serology negative neonates were compared using the Welch 2 sample t test. The relationship between the quantitative maternal and quantitative neonatal serologic data was studied using a Pearson correlation and linear regression. A multiple linear regression analysis was conducted using maternal symptoms, maternal serology levels, and maternal use of oxygen support to determine the predictors of neonatal immunoglobulin G levels. RESULTS: A total of 88 serology positive pregnant women were included in this study. The antibody levels were higher in symptomatic pregnant women than in asymptomatic pregnant women. Serology studies in 34 women with symptom onset data revealed that the maternal immunoglobulin M and immunoglobulin G levels peak around 15 and 30 days after the onset of coronavirus disease 2019 symptoms, respectively. Furthermore, studies of 50 neonates born to this subset of serology positive women showed that passive immunity in the form of immunoglobulin G is conferred in 78% of all neonates. The presence of passive immunity is dependent on the maternal antibody levels, and the levels of neonatal immunoglobulin G correlate with maternal immunoglobulin G levels. The maternal immunoglobulin G levels and maternal use of oxygen support were predictive of the neonatal immunoglobulin G levels. CONCLUSION: We demonstrated that maternal serologies correlate with symptomatic maternal infection, and higher levels of maternal antibodies are associated with passive neonatal immunity. The maternal immunoglobulin G levels and maternal use of oxygen support, a marker of disease severity, predicted the neonatal immunoglobulin G levels. These data will further guide the screening for this uniquely linked population of mothers and their neonates and can aid in developing maternal vaccination strategies.
Weingarten-Gabbay S, Klaeger S, Sarkizova S, Pearlman LR, Chen DY, Gallagher KME, Bauer MR, Taylor HB, Dunn WA, Tarr C, Sidney J, Rachimi S, Conway HL, Katsis K, Wang YT, Leistritz-Edwards D, Durkin MR, Tomkins-Tinch CH, Finkel Y, Nachshon A, Gentili M, Rivera KD, Carulli IP, Chea VA, Chandrashekar A, Bozkus CC, Carrington M, Bhardwaj N, Barouch DH, Sette A, Maus MV, Rice CM, Clauser KR, Keskin DB, Pregibon DC, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC
Show All Authors

Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs

CELL 2021 JUL 22; 184(15):3962-3980.e17 Article e17
T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.
Wu AW, Zhi JH, Tian T, Cihan A, Cevher MA, Liu ZL, David Y, Muir TW, Roeder RG, Yu M
Show All Authors

DOT1L complex regulates transcriptional initiation in human erythroleukemic cells

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2021 JUL 6; 118(27):? Article e2106148118
DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes. More importantly, DOT1L and ENL depletions concomitantly reduce TBP and Pol II occupancies on a significant fraction of direct (DOT1L-bound) target genes, indicating a role for the DOT1L complex in transcription initiation. Mechanistically, proteomic and biochemical studies suggest that the DOT1L complex may regulate transcriptional initiation by facilitating the recruitment or stabilization of transcription factor IID, likely in a monoubiquitinated H2B (H2Bub1)-enhanced manner. Additional studies show that DOT1L enhances H2Bub1 levels by limiting recruitment of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. These results advance our understanding of roles of the DOT1L complex in transcriptional regulation and have important implications for MLLr leukemias.
Galea S, Vaughan R
Show All Authors

The Unintended Health Consequences of Social Policies

AMERICAN JOURNAL OF PUBLIC HEALTH 2021 JUL; 111(7):1202-1203
Renert-Yuval Y, Del Duca E, Pavel AB, Fang M, Lefferdink R, Wu JN, Diaz A, Estrada YD, Canter T, Zhang N, Wagner A, Chamlin S, Krueger JG, Guttman-Yassky E, Paller AS
Show All Authors

The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults

JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY 2021 JUL; 148(1):148-163
Background: Although atopic dermatitis (AD) often presents in infancy and persists into adulthood, comparative characterization of AD skin among different pediatric age groups is lacking. Objective: We sought to define skin biopsy profiles of lesional and nonlesional AD across different age groups (0-5-year-old infants with disease duration <6 months, 6-11-year-old children, 12-17-year-old adolescents, >= 18-year-old adults) versus age appropriate controls. Methods: We performed gene expression analyses by RNA-sequencing and real-time PCR (RT-PCR) and protein expression analysis using immunohistochemistry. Results: T(H)2/T(H)22 skewing, including IL-13, CCL17/thymus and activation-regulated chemokine, IL-22, and S100As, characterized the common AD signature, with a global pathway-level enrichment across all ages. Nevertheless, specific cytokines varied widely. For example, IL-33, IL-1RL1/IL-33R, and IL-9, often associated with early atopic sensitization, showed greatest upregulations in infants. T(H)17 inflammation presented a 2-peak curve, with highest increases in infants (including IL-17A and IL-17F), followed by adults. T(H)1 polarization was uniquely detected in adults, even when compared with adolescents, with significant upregulation in adults of IFN-gamma and CXCL9/CXCL10/CXCL11. Although all AD age groups had barrier abnormalities, only adults had significant decreases in filaggrin expression. Despite the short duration of the disease, infant AD presented robust downregulations of multiple barrier-related genes in both lesional and nonlesional skin. Clinical severity scores significantly correlated with T(H)2/T(H)22-related markers in all pediatric age groups. Conclusions: The shared signature of AD across ages is T(H)2/T(H)22-skewed, yet differential expression of specific T(H)2/T(H)22-related genes, other T-H pathways, and barrier-related genes portray heterogenetic, age-specific molecular fingerprints.
Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang LL, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Gotte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O'Rear J, Painter G, Saikatendu KS, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI
Show All Authors

Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit

JOURNAL OF INFECTIOUS DISEASES 2021 JUL 15; 224(?):S1-S21
The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.
Lu SX, De Neef E, Thomas JD, Sabio E, Rousseau B, Gigoux M, Knorr DA, Greenbaum B, Elhanati Y, Hogg SJ, Chow A, Ghosh A, Xie A, Zamarin D, Cui D, Erickson C, Singer M, Cho HN, Wang ER, Lu B, Durham BH, Shah H, Chowell D, Gabel AM, Shen YD, Liu J, Jin J, Rhodes MC, Taylor RE, Molina H, Wolchok JD, Merghoub T, Diaz LA, Abdel-Wahab O, Bradley RK
Show All Authors

Pharmacologic modulation of RNA splicing enhances anti-tumor immunity

CELL 2021 JUL 22; 184(15):4032-4047.e31 Article e31
Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide ameans to enhance response to checkpoint blockade that is readily translatable to the clinic.
Brivanlou AH, Rivron N, Gleicher N
Show All Authors

How will our understanding of human development evolve over the next 10 years

NATURE COMMUNICATIONS 2021 JUL 29; 12(1):? Article 4614
In the next 10 years, the continued exploration of human embryology holds promise to revolutionize regenerative and reproductive medicine with important societal consequences. In this Comment we speculate on the evolution of recent advances made and describe emerging technologies for basic research, their potential clinical applications, and, importantly, the ethical frameworks in which they must be considered.
Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M, Gaebler C, Cho A, Agudelo M, Finkin S, Wang ZJ, Poston D, Muecksch F, Hatziioannou T, Bieniasz PD, Robbiani DF, Nussenzweig MC, Bjorkman PJ, Bloom JD
Show All Authors

Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies

NATURE COMMUNICATIONS 2021 JUL 7; 12(1):? Article 4196
Emerging SARS-CoV-2 mutants may escape neutralization by antibodies. Here, the authors use deep mutational scanning to identify mutations in the RBD that escape human monoclonal antibodies or convalescent plasmas. Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasmas, including plasmas from individuals from whom some of the antibodies were isolated. While the binding of polyclonal plasma antibodies are affected by mutations across multiple RBD epitopes, the plasma-escape maps most resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is skewed towards a single class of antibodies targeting an epitope that is already undergoing rapid evolution.