Publications search

Found 37684 matches. Displaying 1141-1150
Naik HB, Alhusayen R, Frew J, Guilbault S, Hills NK, Ingram JR, Kudlinski MV, Lowes MA, Marzano AV, Paul M, Villumsen B, Yannuzzi CA
Show All Authors

Biologic therapy is not associated with increased COVID-19 severity in patients with hidradenitis suppurativa: Initial findings from the Global Hidradenitis Suppurativa COVID-19 Registry

JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY 2022 JAN; 86(1):249-252
Victora GD, Nussenzweig MC
Show All Authors

Germinal Centers

ANNUAL REVIEW OF IMMUNOLOGY 2022; 40(?):413-442
Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum.
Carapito R, Li R, Helms J, Carapito C, Gujja S, Rolli V, Guimaraes R, Malagon-Lopez J, Spinnhirny P, Lederle A, Mohseninia R, Hirschler A, Muller L, Bastard P, Gervais A, Zhang Q, Danion F, Ruch Y, Schenck M, Collange O, Chamaraux-Tran TN, Molitor A, Pichot A, Bernard A, Tahar O, Bibi-Triki S, Wu HG, Paul N, Mayeur S, Larnicol A, Laumond G, Frappier J, Schmidt S, Hanauer A, Macquin C, Stemmelen T, Simons M, Mariette X, Hermine O, Fafi-Kremer S, Goichot B, Drenou B, Kuteifan K, Pottecher J, Mertes PM, Kailasan S, Aman MJ, Pin E, Nilsson P, Thomas A, Viari A, Sanlaville D, Schneider F, Sibilia J, Tharaux PL, Casanova JL, Hansmann Y, Lidar D, Radosavljevic M, Gulcher JR, Meziani F, Moog C, Chittenden TW, Bahram S
Show All Authors

Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort

SCIENCE TRANSLATIONAL MEDICINE 2022 JAN 19; 14(628):? Article eabj7521
The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding factors such as age and comorbidities, true mediators of this condition have remained elusive. We used a multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset. The cohort included 47 "critical" (in the intensive care unit under mechanical ventilation) and 25 "non-critical" (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cell proteomics, cytokine profiling, and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were used. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially expressed genes, we observed up-regulation of the metalloprotease ADAM9. This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19 and was further confirmed at the transcriptional and protein level and by proteolytic activity. Ex vivo ADAM9 inhibition decreased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, cohort of individuals with COVID-19, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. We further identified ADAM9 as a driver of disease severity and a candidate therapeutic target.
Carlson AL, Floyd RJ, Arbona RJR, Henderson KS, Perkins C, Lipman NS
Show All Authors

Assessing Elimination of Mouse Kidney Parvovirus from Cages by Mechanical Washing

JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2022 JAN; 61(1):61-66
Mouse kidney parvovirus (MKPV), a newly identified parvovirus of the genus Chaphamaparvovirus, causes inclusion body nephropathy in severely immunocompromised mice and is prevalent in research mouse colonies. As nonenveloped viruses, mammalian parvoviruses are stable and generally resist thermal inactivation; however, as a novel and highly divergent parvovirus, the thermal stability of MKPV is undefined. This study aimed to evaluate the ability of cage sanitization in a mechanical washer to eliminate MKPV. Cages contaminated by MKPV-infected mice were assigned to 1 of 3 treatment groups: 1) control (bedding change only); 2) sanitization in a tunnel washer (88 degrees C final rinse for 20 s); or 3) sanitization in a tunnel washer followed by autoclave sterilization (121 degrees C for 20 min). The presence of MKPV on the cage's interior surface was assessed by PCR of cage swab extracts collected before and after cage treatment. After treatment and swabbing, each cage housed 4 MKPV-negative CD1 mice. Each group of naive CD1 mice was assigned to one of the treatment groups and was housed in a cage from this group for two, 1 wk periods. At 12, 17, and 20 wk after the first exposure, renal tissue was collected from 1 test mouse per cage and assessed for MKPV by PCR. MKPV was detected by PCR on the surface of 63% of the pretreatment cages. All cages sanitized in a tunnel washer with or without sterilization were PCR negative after treatment. Seven of 10 mice housed in untreated cages contained a mouse positive for MKPV by 20 wk after exposure. None of the mice housed in cages sanitized in a tunnel washer with or without sterilization tested positive for MKPV at any time point. This study indicates that MKPV contaminated caging can result in MKPV infection of mice, and the use of a tunnel washer at the temperature and duration evaluated was sufficient to remove MKPV nucleic acid and prevent MKPV transmission.
Cho A, Gaebler C, Olveira T, Ramos V, Saad M, Lorenzi JCC, Gazumyan A, Moir S, Caskey M, Chun TW, Nussenzweig MC
Show All Authors

Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2022 JAN 25; 119(4):? Article e2117630119
HIV-1 infection produces a long-lived reservoir of latently infected CD4(+) T cells that represents the major barrier to HIV-1 cure. The reservoir contains both intact and defective proviruses, but only the proviruses that are intact can reinitiate infection upon cessation of antiretroviral therapy (ART). Here we combine four-color quantitative PCR and next-generation sequencing (Q4PCR) to distinguish intact and defective proviruses and measure reservoir content longitudinally in 12 infected individuals. Q4PCR differs from other PCR-based methods in that the amplified proviruses are sequence verified as intact or defective. Samples were collected systematically over the course of up to 10 y beginning shortly after the initiation of ART. The size of the defective reservoir was relatively stable with minimal decay during the 10-y observation period. In contrast, the intact proviral reservoir decayed with an estimated half-life of 4.9 y. Nevertheless, both intact and defective proviral reservoirs are dynamic. As a result, the fraction of intact proviruses found in expanded clones of CD4(+) T cells increases over time with a concomitant decrease in overall reservoir complexity. Thus, reservoir decay measurements by Q4PCR are quantitatively similar to viral outgrowth assay (VOA) and intact proviral DNA PCR assay (IPDA) with the addition of sequence information that distinguishes intact and defective proviruses and informs reservoir dynamics. The data are consistent with the notion that intact and defective proviruses are under distinct selective pressure, and that the intact proviral reservoir is progressively enriched in expanded clones of CD4(+) T cells resulting in diminishing complexity over time.
Cridland JM, Majane AC, Zhao L, Begun DJ
Show All Authors

Population biology of accessory gland-expressed de novo genes in Drosophila melanogaster

GENETICS 2022 JAN; 220(1):? Article iyab207
Early work on de novo gene discovery in Drosophila was consistent with the idea that many such genes have male-biased patterns of expression, including a large number expressed in the testis. However, there has been little formal analysis of variation in the abundance and properties of de novo genes expressed in different tissues. Here, we investigate the population biology of recently evolved de novo genes expressed in the Drosophila melanogaster accessory gland, a somatic male tissue that plays an important role in male and female fertility and the post mating response of females, using the same collection of inbred lines used previously to identify testis-expressed de novo genes, thus allowing for direct cross tissue comparisons of these genes in two tissues of male reproduction. Using RNA-seq data, we identify candidate de novo genes located in annotated intergenic and intronic sequence and determine the properties of these genes including chromosomal location, expression, abundance, and coding capacity. Generally, we find major differences between the tissues in terms of gene abundance and expression, though other properties such as transcript length and chromosomal distribution are more similar. We also explore differences between regulatory mechanisms of de novo genes in the two tissues and how such differences may interact with selection to produce differences in D. melanogaster de novo genes expressed in the two tissues.
Barrangou R, Marraffini LA
Show All Authors

Turning CRISPR on with antibiotics

CELL HOST & MICROBE 2022 JAN 12; 30(1):12-14
CRISPR-Cas systems have the ability to integrate invasive DNA sequences to build adaptive immunity in bacteria. In this issue Dimitriu et al. show bacteriostatic antibiotics prompt CRISPR acquisition events, illustrating how environmental conditions affect complex dynamics between host and virus and the corresponding biological and genetic arms race.
Martinot M, Korganow AS, Wald M, Second J, Birckel E, Mahe A, Souply L, Mohseni-Zadeh M, Droy L, Tarabeux J, Okada S, Migaud M, Puel A, Guffroy A
Show All Authors

Case Report: A New Gain-of-Function Mutation of STAT1 Identified in a Patient With Chronic Mucocutaneous Candidiasis and Rosacea-Like Demodicosis: An Emerging Association

FRONTIERS IN IMMUNOLOGY 2021 DEC 20; 12(?):? Article 760019
PurposeHeterozygous missense STAT1 mutations leading to a gain of function (GOF) are the most frequent genetic cause of chronic mucocutaneous candidiasis (CMC). We describe the case of a patient presenting a new GOF mutation of STAT1 with the clinical symptoms of CMC, recurrent pneumonia, and persistent central erythema with papulopustules with ocular involvement related to rosacea-like demodicosis. MethodsGenetic analysis via targeted next-generation sequencing (NGS; NGS panel DIPAI v.1) exploring the 98 genes most frequently involved in primary immunodeficiencies, including STAT1, was performed to identify an underlying genetic defect. ResultsNGS identified a novel variant of STAT1, c.884C>A (exon 10), p.T295Y, not previously described. This variant was found to be gain of function using an in vitro luciferase reporter assay. Rosacea-like demodicosis was confirmed by substantial Demodex proliferation observed via the microscopic examination of a cutaneous sample. A review of literature retrieved 20 other cases of STAT1 GOF mutations associated with early-onset rosacea-like demodicosis, most with ocular involvement. ConclusionWe describe a new STAT1 GOF mutation associated with a phenotype of CMC and rosacea-like demodicosis. Rosacea-like demodicosis appears as a novel and important clinical phenotype among patients with STAT1 GOF mutation.
Bayrak CS, Stein D, Jain A, Chaudhary K, Nadkarni GN, Van Vleck TT, Puel A, Boisson-Dupuis S, Okada S, Stenson PD, Cooper DN, Schlessinger A, Itan Y
Show All Authors

Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants

AMERICAN JOURNAL OF HUMAN GENETICS 2021 DEC 2; 108(12):2301-2318
Identifying whether a given genetic mutation results in a gene product with increased (gain-of-function; GOF) or diminished (loss-offunction; LOF) activity is an important step toward understanding disease mechanisms because they may result in markedly different clinical phenotypes. Here, we generated an extensive database of documented germline GOF and LOF pathogenic variants by employing natural language processing (NLP) on the available abstracts in the Human Gene Mutation Database. We then investigated various geneand protein-level features of GOF and LOF variants and applied machine learning and statistical analyses to identify discriminative features. We found that GOF variants were enriched in essential genes, for autosomal-dominant inheritance, and in protein binding and interaction domains, whereas LOF variants were enriched in singleton genes, for protein-truncating variants, and in protein core regions. We developed a user-friendly web-based interface that enables the extraction of selected subsets from the GOF/LOF database by a broad set of annotated features and downloading of up-to-date versions. These results improve our understanding of how variants affect gene/protein function and may ultimately guide future treatment options.
Ortuno MJ, Schneeberger M, Ilanges A, Marchildon F, Pellegrino K, Friedman JM, Ducy P
Show All Authors

Melanocortin 4 receptor stimulation prevents antidepressant-associated weight gain in mice caused fluoxetine

JOURNAL OF CLINICAL INVESTIGATION 2021 DEC 15; 131(24):? Article e151976
Contrasting with the predicted anorexigenic effect of increasing brain serotonin signaling, long-term use of selective serotonin reuptake inhibitor (SSRI) antidepressants correlates with body weight (BW) gain. This adverse outcome increases the risk of transitioning to obesity and interferes with treatment compliance. Here, we show that orally administered fluoxetine (Flx), a widely prescribed SSRI, increased BW by enhancing food intake in healthy mice at 2 different time points and through 2 distinct mechanisms. Within hours, Flx decreased the activity of a subset of brainstem serotonergic neurons by triggering autoinhibitory signaling through 5-hydroxytryptamine receptor 1a (Htr1a). Following a longer treatment period, Flx blunted 5-hydroxytryptamine receptor 2c (Htr2c) expression and signaling, decreased the phosphorylation of cAMP response element-binding protein (CREB) and STAT3, and dampened the production of pro-opiomelanocortin (POMC, the precursor of alpha-melanocyte stimulating hormone [alpha-MSH]) in hypothalamic neurons, thereby increasing food intake. Accordingly, exogenous stimulation of the melanocortin 4 receptor (Mc4r) by cotreating mice with Flx and lipocalin 2, an anorexigenic hormone signaling through this receptor, normalized feeding and BW. Flx and other SSRIs also inhibited CREB and STAT3 phosphorylation in a human neuronal cell line, suggesting that these noncanonical effects could also occur in individuals treated long term with SSRIs. By defining the molecular basis of long-term SSRI-associated weight gain, we propose a therapeutic strategy to counter this effect.