Publications search

Found 37684 matches. Displaying 1011-1020
Gruell H, Gunst JD, Cohen YZ, Pahus MH, Malin JJ, Platten M, Millard KG, Tolstrup M, Jones RB, Alberto WDC, Lorenzi JCC, Oliveira TY, Kummerle T, Suarez I, Unson-O'Brien C, Nogueira L, Olesen R, Ostergaard L, Nielsen H, Lehmann C, Nussenzweig MC, Fatkenheuer G, Klein F, Caskey M, Sogaard OS
Show All Authors

Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial

LANCET MICROBE 2022 MAR; 3(3):E203-E214
Background The administration of broadly neutralising anti-HIV-1 antibodies before latency reversal could facilitate elimination of HIV-1-infected CD4 T cells. We tested this concept by combining the broadly neutralising antibody 3BNC117 in combination with the latency-reversing agent romidepsin in people with HIV-1 who were taking suppressive antiretroviral therapy (ART). Methods We did a randomised, open-label, phase 2A trial at three university hospital centres in Denmark, Germany, and the USA. Eligible participants were virologically suppressed adults aged 18-65 years who were infected with HIV-1 and on ART for at least 18 months, with plasma HIV-1 RNA concentrations of less than 50 copies per mL for at least 12 months, and a CD4 T-cell count of greater than 500 cells per mu L. Participants were randomly assigned (1:1) to receive 3BNC117 plus romidepsin or romidepsin alone in two cycles. All participants received intravenous infusions of romidepsin (5 mg/m(2) given over 120 min) at weeks 0, 1, and 2 (treatment cycle 1) and weeks 8, 9, and 10 (treatment cycle 2). Those in the 3BNC117 plus romidepsin group received an intravenous infusion of 3BNC117 (30 mg/kg given over 60 min) 2 days before each treatment cycle. An analytic treatment interruption (ATI) of ART was done at week 24 in both groups. Our primary endpoint was time to viral rebound during analytic treatment interruption, which was assessed in all participants who completed both treatment cycles and ATI. We used a log-rank test to compare time to viral rebound during analytic treatment interruption between the two groups. This trial is registered with ClinicalTrials. gov, NCT02850016. It is closed to new participants, and all follow-up is complete. Findings Between March 20, 2017, and Aug 14, 2018, 22 people were enrolled and randomly assigned, 11 to the 3BNC117 plus romidepsin group and 11 to the romidepsin group. 19 participants completed both treatment cycles and the ATI: 11 in the 3BNC117 plus romidepsin group and 8 in the romidepsin group. The median time to viral rebound during ATI was 18 days (IQR 14-28) in the 3BNC117 plus romidepsin group and 28 days (21-35) in the romidepsin group B (p=0.0016). Although this difference was significant, prolongation of time to viral rebound was not clinically meaningful in either group. All participants in both groups reported adverse events, but overall the combination of 3BNC117 and romidepsin was safe. Two severe adverse events were observed in the romidepsin group during 48 weeks of follow-up, one of which-increased direct bilirubin-was judged to be related to treatment. Interpretation The combination of 3BNC117 and romidepsin was safe but did not delay viral rebound during analytic treatment interruptions in individuals on long-term ART. The results of our trial could serve as a benchmark for further optimisation of HIV-1 curative strategies among people with HIV-1 who are taking suppressive ART. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.
Kastenhuber ER, Mercadante M, Nilsson-Payant B, Johnson JL, Jaimes JA, Muecksch F, Weisblum Y, Bram Y, Chandar V, Whittaker GR, tenOever BR, Schwartz RE, Cantley L
Show All Authors

Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry

ELIFE 2022 MAR 23; 11(?):? Article e77444
Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Bellone S, Roque DM, Siegel ER, Buza N, Hui P, Bonazzoli E, Guglielmi A, Zammataro L, Nagarkatti N, Zaidi S, Lee J, Silasi DA, Huang GS, Andikyan V, Damast S, Clark M, Azodi M, Schwartz PE, Tymon-Rosario JR, Harold JA, Mauricio D, Zeybek B, Menderes G, Altwerger G, Ratner E, Alexandrov LB, Iwasaki A, Kong Y, Song E, Dong WL, Elvin JA, Choi J, Santin AD
Show All Authors

A phase 2 evaluation of pembrolizumab for recurrent Lynch-like versus sporadic endometrial cancers with microsatellite instability

CANCER 2022 MAR 15; 128(6):1206-1218
Background Microsatellite instability-high (MSI-H)/mismatch repair deficiency (dMMR) is a biomarker for responses to immune checkpoint inhibitors (ICIs). Whether mechanisms underlying microsatellite instability alter responses to ICIs is unclear. This article reports data from a prospective phase 2 pilot study of pembrolizumab in patients with recurrent MSI-H endometrial cancer (EC) analyzed by whole exome sequencing (WES) and potential mechanisms of primary/secondary ICI resistance (NCT02899793). Methods Patients with measurable MSI-H/dMMR EC confirmed by polymerase chain reaction/immunohistochemistry were evaluated by WES and received 200 mg of pembrolizumab every 3 weeks for <= 2 years. The primary end point was the objective response rate (ORR). Secondary end points included progression-free survival (PFS) and overall survival (OS). Results Twenty-five patients (24 evaluable) were treated. Six patients (25%) harbored Lynch/Lynch-like tumors, whereas 18 (75%) had sporadic EC. The tumor mutation burden was higher in Lynch-like tumors (median, 2939 mutations/megabase [Mut/Mb]; interquartile range [IQR], 867-5108 Mut/Mb) than sporadic tumors (median, 604 Mut/Mb; IQR, 411-798 Mut/Mb; P = .0076). The ORR was 100% in Lynch/Lynch-like patients but only 44% in sporadic patients (P = .024). The 3-year PFS and OS proportions were 100% versus 30% (P = .017) and 100% versus 43% (P = .043), respectively. Conclusions This study suggests prognostic significance of Lynch-like cancers versus sporadic MSI-H/dMMR ECs for ORR, PFS, and OS when patients are treated with pembrolizumab. Larger confirmatory studies in ECs and other MSI-H/dMMR tumors are necessary. Defective antigen processing/presentation and deranged induction in interferon responses serve as mechanisms of resistance in sporadic MSI-H ECs. Oligoprogression in MSI-H/dMMR patients appears salvageable with surgical resection and/or local treatment and the continuation of pembrolizumab off study. Clinical studies evaluating separate MSI-H/dMMR EC subtypes treated with ICIs are warranted.
Gupta A, Smith P, Bournazos S, Ravetch JV
Show All Authors

A novel mouse strain optimized for chronic human antibody administration

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2022 MAR 8; 119(10):? Article e2123002119
Therapeutic human IgG antibodies are routinely tested in mouse models of oncologic, infectious, and autoimmune diseases. However, assessing the efficacy and safety of long-term administration of these agents has been limited by endogenous anti-human IgG immune responses that act to clear human IgG from serum and relevant tissues, thereby reducing their efficacy and contributing to immune complex-mediated pathologies, confounding evaluation of potential toxicity. For this reason, human antibody treatment in mice is generally limited in duration and dosing, thus failing to recapitulate the potential clinical applications of these therapeutics. Here, we report the development of a mouse model that is tolerant of chronic human antibody administration. This model combines both a human IgG1 heavy chain knock-in and a full recapitulation of human Fc receptor (Fc gamma R) expression, providing a unique platform for in vivo testing of human monoclonal antibodies with relevant receptors beyond the short term. Compared to controls, hIgG1 knock-in mice mount minimal anti-human IgG responses, allowing for the persistence of therapeutically active circulating human IgG even in the late stages of treatment in chronic models of immune thrombocytopenic purpura and metastatic melanoma.
Lorin V, Fernandez I, Masse-Ranson G, Bouvin-Pley M, Molinos-Albert LM, Planchais C, Hieu T, Pehau-Arnaudet G, Hrebik D, Girelli-Zubani G, Fiquet O, Guivel-Benhassine F, Sanders RW, Walker BD, Schwartz O, Scheid JF, Dimitrov JD, Plevka P, Braibant M, Seaman MS, Bontems F, Di Santo JP, Rey FA, Mouquet H
Show All Authors

Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller

JOURNAL OF EXPERIMENTAL MEDICINE 2022 MAR 1; 219(3):? Article e20212045
Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG(+) or IgA(+) blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-angstrom resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.
Ebenezer TE, Muigai AWT, Nouala S, Badaoui B, Blaxter M, Buddie AG, Jarvis ED, Korlach J, Kuja JO, Lewin HA, Majewska R, Mapholi N, Maslamoney S, Mbo'o-Tchouawou M, Osuji JO, Seehausen O, Shorinola O, Tiambo CK, Mulder N, Ziyomo C, Djikeng A
Show All Authors

Africa: sequence 100,000 species to safeguard biodiversity

NATURE 2022 MAR 17; 603(7901):388-392
Park SH, Koyano KW, Russ BE, Waidmann EN, McMahon DBT, Leopold DA
Show All Authors

Parallel functional subnetworks embedded in the macaque face patch system

SCIENCE ADVANCES 2022 MAR; 8(10):? Article eabm2054
During normal vision, our eyes provide the brain with a continuous stream of useful information about the world. How visually specialized areas of the cortex, such as face-selective patches, operate under natural modes of behavior is poorly understood. Here we report that, during the free viewing of movies, cohorts of face-selective neurons in the macaque cortex fractionate into distributed and parallel subnetworks that carry distinct information. We classified neurons into functional groups on the basis of their movie-driven coupling with functional magnetic resonance imaging time courses across the brain. Neurons from each group were distributed across multiple face patches but intermixed locally with other groups at each recording site. These findings challenge prevailing views about functional segregation in the cortex and underscore the importance of naturalistic paradigms for cognitive neuroscience.
Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA
Show All Authors

Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex

NATURE STRUCTURAL & MOLECULAR BIOLOGY 2022 MAR; 29(3):250-+
In their complex, the SARS-CoV-2 nsp13 helicase and RNA polymerase would translocate on RNA in opposite directions. Cryo-EM and MD simulations resolve this conundrum, suggesting an allosteric mechanism to turn the helicase on and off. The SARS-CoV-2 nonstructural proteins coordinate genome replication and gene expression. Structural analyses revealed the basis for coupling of the essential nsp13 helicase with the RNA-dependent RNA polymerase (RdRp) where the holo-RdRp and RNA substrate (the replication-transcription complex or RTC) associated with two copies of nsp13 (nsp13(2)-RTC). One copy of nsp13 interacts with the template-RNA in an opposing polarity to the RdRp and is envisaged to drive the RdRp backward on the RNA template (backtracking), prompting questions as to how the RdRp can efficiently synthesize RNA in the presence of nsp13. Here we use cryogenic-electron microscopy and molecular dynamics simulations to analyze the nsp13(2)-RTC, revealing four distinct conformational states of the helicases. The results indicate a mechanism for the nsp13(2)-RTC to turn backtracking on and off, using an allosteric mechanism to switch between RNA synthesis or backtracking in response to stimuli at the RdRp active site.
Dubin C, Glickman JW, Del Duca E, Chennareddy S, Han J, Dahabreh D, Estrada YD, Zhang N, Kimmel GW, Singer G, Chowdhury M, Zheng AY, Angelov M, Gay-Mimbrera J, Ruiz JR, Krueger JG, Pavel AB, Guttman-Yassky E
Show All Authors

Scalp and serum profiling of frontal fibrosing alopecia reveals scalp immune and fibrosis dysregulation with no involvement

JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY 2022 MAR; 86(3):551-562
Background: Frontal fibrosing alopecia (FFA) is a progressive, scarring alopecia of the frontotemporal scalp that poses a substantial burden on quality of life. Large-scale global profiling of FFA is lacking, preventing the development of effective therapeutics. Objective: To characterize FFA compared to normal and alopecia areata using broad molecular profiling and to identify biomarkers linked to disease severity. Methods: This cross-sectional study assessed 33,118 genes in scalp using RNA sequencing and 350 proteins in serum using OLINK high-throughput proteomics. Disease biomarkers were also correlated with clinical severity and a fibrosis gene set. Results: Genes differentially expressed in lesional FFA included markers related to Th1 (IFN gamma/CXCL9/CXCL10), T-cell activation (CD2/CD3/CCL19/ICOS), fibrosis (CXCR3/FGF14/FGF22/VIM/FN1), T-regulatory (FOXP3/TGFB1/TGFB3), and Janus kinase/JAK (JAK3/STAT1/STAT4) (Fold changes [FCH]>1.5, FDR<.05 for all). Only one protein, ADM, was differentially expressed in FFA serum compared to normal (FCH>1.3, FDR>.05). Significant correlations were found between scalp biomarkers (IL-36RN/IL-25) and FFA severity, as well as between JAK/STAT and fibrosis gene-sets (r>6; P<.05). Limitations: This study was limited by a small sample size and predominantly female FFA patients. Conclusion: Our data characterize FFA as an inflammatory condition limited to scalp, involving Th1/JAK skewing, with associated fibrosis and elevated T-regulatory markers, suggesting the potential for disease reversibility with JAK/STAT inhibition.