Within the brain, some neurons fire off hundreds of signals per second, and after ramping up for such a barrage, they need to relax and reset. A particular type of ion channel helps bring them down, ensuring these cells don’t get overstimulated—a state that potentially can lead to severe epilept...

Many neurological disorders can rob someone of the ability to speak clearly, causing them to stutter, mispronounce words, and struggle to put together coherent sentences. However, the molecular and neurological dysfunctions that cause these symptoms aren’t well understood. Recent work at The Rock...

Many millions of times per day, football-shaped structures called mitotic spindles form within the body’s cells as they prepare to divide. The process is routine but mysterious, as the micro-mechanics involved are not yet well understood. In research published October 1 in Developmental Cell, sci...

A new class of drugs under development to treat depression has shown some success by targeting brain cells’ ability to respond to the chemical messenger glutamate. But the mechanism by which these experimental therapies work has remained unknown. The recent discovery, by a Rockefeller University-...

A cell does everything it can to protect its nucleus, where precious genetic information is stored. That includes controlling the movement of molecules in and out using gateways called nuclear pore complexes (NPCs). Now, researchers at The Rockefeller University, Albert Einstein College of Medici...

Caenorhabditis elegans, a tiny roundworm, spends much of its lifetime searching for soil bacteria to eat. This humble creature possesses 302 neurons, which may not seem like a lot compared to the billions of nerve cells that make up the human brain. Nonetheless, it uses sophisticated strategies t...

Inside the trillions of cells that make up the human body, things are rarely silent. Molecules are constantly being made, moved, and modified — and during these processes, mistakes are sometimes made. Strands of DNA, for instance, can break for any number of reasons, such as exposure to UV radiat...

After it is transcribed from DNA, RNA can go on to many fates. While the most familiar path may lead directly to the production of protein, RNA molecules themselves can also become capable of altering the expression of genes. New research helps explain how the destiny of an RNA sequence is achiev...

Cancer researchers are constantly in search of more-effective and less-toxic approaches to stopping the disease, and have recently launched clinical trials testing a new class of drugs called BET inhibitors. These therapies act on a group of proteins that help regulate the expression of many gene...

It is a hallmark of Alzheimer’s disease: Toxic protein fragments known as amyloid-β clumped together between neurons in a person’s brain. Neurons themselves make amyloid-β, and for reasons that aren’t fully understood, its accumulation ultimately contributes to the memory loss, personality c...