Light Beads Microscopy (LBM)

Application:

- a) Cellular resolution in mammalian brain tissue
 - Cortex-wide and multiregional high-speed volumetric calcium imaging in the mouse brain at cellular resolution
 - Large-scale cellular resolution volumetric imaging in NHP (marmoset) brain
- b) Sub-cellular resolution in mammalian brain, whole-brain imaging in invertebrates and zebrafish
 - High speed whole brain imaging in zebrafish at larval and juvenile stage
 - Volumetric synaptic resolution functional imaging in mammalian brains
 - Large-scale / whole brain imaging in invertebrates
- c) Non-neuronal imaging

Example technical parameters:

- a) Cellular resolution / large volume: 5 x 5 x 0.5 mm 30 planes at <3 Hz; voxel sampling / resolution: $\sigma_{x,y}^{5}$ μ m , σ_{z}^{6} 15 μ m
- b) High resolution / small volume: ~1 x 1 x 0.5 mm 30 planes at <5 Hz; voxel sampling / resolution $\sigma_{x,y}$ <1 μm , σ_z < 10 μm
- c) Other configurations and tradeoffs of the spatial and temporal resolution and volume size within the same voxel sampling rate of $^{\sim}150 \times 10^6$ voxels per second possible

Optimized three-photon imaging

Application:

- Deep (>1mm), sub-cortical imaging at cellular / sub-cellular resolution
- Imaging in gut
- Imaging through skull / dura invertebrate cuticles
- Spinal cord imaging

Example technical parameters:

~0.3 x 0.3 mm at ~1.0 – 1.3 mm depth in mammalian brain at ~10 Hz; voxel sampling / resolution: $\sigma_{x,y}$ <1 μ m, σ_z < 10 μ m

Approach:

- LBM will be integrated optionally into a standard 2p microscope or a mesoscope
- The 2p microscope equipped also with optimized volumetric 3p imaging modality