Skip to main content

Publications search

Found 37003 matches. Displaying 71-80
Ilanges A, Shiao R, Shaked J, Luo JD, Yu XF, Friedman JM
Show All Authors

Brainstem ADCYAP1(+) neurons control multiple aspects of sickness behaviour

NATURE 2022 SEP 22; 609(7928):761-+
Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours(1). Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated(2-4). Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1(+) neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.
Formenti G, Abueg L, Brajuka A, Brajuka N, Gallardo-Alba C, Giani A, Fedrigo O, Jarvis ED
Show All Authors

Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs

BIOINFORMATICS 2022 SEP 2; 38(17):4214-4216
Motivation: With the current pace at which reference genomes are being produced, the availability of tools that can reliably and efficiently generate genome assembly summary statistics has become critical. Additionally, with the emergence of new algorithms and data types, tools that can improve the quality of existing assemblies through automated and manual curation are required. Results: We sought to address both these needs by developing gfastats, as part of the Vertebrate Genomes Project (VGP) effort to generate high-quality reference genomes at scale. Gfastats is a standalone tool to compute assembly summary statistics and manipulate assembly sequences in FASTA, FASTQ or GFA [.gz] format. Gfastats stores assembly sequences internally in a GFA-like format. This feature allows gfastats to seamlessly convert FAST* to and from GFA [.gz] files. Gfastats can also build an assembly graph that can in turn be used to manipulate the underlying sequences following instructions provided by the user, while simultaneously generating key metrics for the new sequences.
Caradonna SG, Paul MR, Marrocco J
Show All Authors

An allostatic epigenetic memory on chromatin footprints after double-hit acute stress

NEUROBIOLOGY OF STRESS 2022 SEP; 20(?):? Article 100475
Stress induces allostatic responses, whose limits depend on genetic background and the nature of the challenges. Allostatic load reflects the cumulation of these reponses over the course of life. Acute stress is usually associated with adaptive responses, although, depending on the intensity of the stress and individual differences , some may experience maladaptive coping that persists through life and may influence subsequent responses to stressful events, as is the case of post -traumatic stress disorder. We investigated the behavioral traits and epigenetic signatures in a double-hit mouse model of acute stress in which heterotypic stressors (acute swim stress and acute restraint stress) were applied within a 7-day interval period. The ventral hippocampus was isolated to study the footprints of chromatin accessibility driven by exposure to double-hit stress. Using ATAC sequencing to determine regions of open chromatin, we showed that depending on the number of acute stressors, several gene sets related to development, immune function, cell starvation, translation, the cytoskeleton, and DNA modification were reprogrammed in both males and females. Chromatin accessibility for transcription factor binding sites showed that stress altered the accessibility for androgen, glucocorticoid, and mineralocorticoid receptor binding sites (AREs/GREs) at the genome-wide level, with double-hit stressed mice displaying a profile unique from either single hit of acute stress. The investigation of AREs/GREs adjacent to gene coding regions revealed several stress-related genes, including Fkbp5, Zbtb16, and Ddc, whose chromatin accessibility was affected by prior exposure to stress. These data demonstrate that acute stress is not truly acute because it induces allostatic signatures that persist in the epigenome and may manifest when a second challenge hits later in life.
De novo gene origination, where a previously nongenic genomic sequence becomes genic through evolution, is increasingly recognized as an important source of novelty. Many de novo genes have been proposed to be protein-coding, and a few have been experimentally shown to yield protein products. However, the systematic study of de novo proteins has been hampered by doubts regarding their translation without the experimental observation of protein products. Using a systematic, mass-spectrometry-first computational approach, we identify 993 unannotated open reading frames with evidence of translation (utORFs) in Drosophila melanogaster. To quantify the similarity of these utORFs across Drosophila and infer phylostratigraphic age, we develop a synteny-based protein similarity approach. Combining these results with reference datasets ontissue- and life stage-specific transcription and conservation, we identify different properties amongst these utORFs. Contrary to expectations, the fastest-evolving utORFs are not the youngest evolutionarily. We observed more utORFs in the brain than in the testis. Most of the identified utORFs may be of de novo origin, even accounting for the possibility of false-negative similarity detection. Finally, sequence divergence after an inferred de novo origin event remains substantial, suggesting that de novo proteins turn over frequently. Our results suggest that there is substantial unappreciated diversity in de novo protein evolution: many more may exist than previously appreciated; there may be divergent evolutionary trajectories, and they may be gained and lost frequently. All in all, there may not exist a single characteristic model of de novo protein evolution, but instead, there may be diverse evolutionary trajectories.
Omelchenko T
Show All Authors

Cellular protrusions in 3D: Orchestrating early mouse embryogenesis

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY 2022 SEP; 129(?):63-74
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin -myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Erdos M, Boyarchuk O, Marodi L
Show All Authors

Case Report: Association between cyclic neutropenia and SRP54 deficiency

FRONTIERS IN IMMUNOLOGY 2022 SEP 8; 13(?):? Article 975017
Autosomal dominant mutations in the signal recognition particle (SRP) 54 gene were recently described in patients with severe congenital neutropenia (SCN). SRP54 deficiency cause a chronic and profound neutropenia with maturation arrest at the promyelocyte stage, occurring in the first months of life. Nearly all reported patients with SRP54 mutations had neutropenia without a cyclic pattern and showed a poor or no response to granulocyte colony-stimulating factor (G-CSF) therapy. We report here an 11-year-old female patient with cyclic neutropenia and recurrent heterozygous p.T117del (c.349_351del) in-frame deletion mutation in SRP54, who showed remarkable therapeutic response to G-CSF treatment. The diagnosis of cyclic pattern of neutropenia was established by acceptable standards. ELANE gene mutation was excluded by using various genetic approaches. The patient described here also had dolichocolon which has not been described before in association with SCN.
Plucinska K, Zaman S, Cohen P
Show All Authors

Fructose: Not sweet enough for brown fat?

CELL REPORTS MEDICINE 2022 SEP 20; 3(9):? Article 100747
In a randomized crossover study in humans, high fructose feeding reduced glucose uptake in brown fat without affecting the tissue's oxidative capacity. These effects were independent of alterations in the gut mi-crobiome.
Youssefian L, Saeidian AH, Tavasoli AR, Kalamati E, Naghipoor K, Hozhabrpour A, Mesdaghi M, Saffarian Z, Mahmoudi H, Nabavi M, Shokri S, Zeinali S, Beziat V, Casanova JL, Jouanguy E, Uitto J, Vahidnezhad H
Show All Authors

Recalcitrant Cutaneous Warts in a Family with Inherited ICOS Deficiency

JOURNAL OF INVESTIGATIVE DERMATOLOGY 2022 SEP; 142(9):2435-2445
Recalcitrant warts, caused by human papillomaviruses (HPVs), can be a cutaneous manifestation of inborn error of immunity. This study investigated the clinical manifestations, immunodeficiency, single-gene susceptibility, and HPV repertoire in a consanguineous family with severe sinopulmonary infections and recalcitrant warts. Clinical and immunologic evaluations, including FACS and lymphocyte transformation test, provided evidence for immunodeficiency. Combined whole-exome sequencing and genome-wide homozygosity mapping were utilized to disclose candidate sequence variants. Whole-transcriptome sequencing was used to concomitantly investigate the HPV genotypes and the consequences of detected sequence variants in the host. The proband, a male aged 41 years, was found to be homozygous for the c.6delG, p.Lys2Asnfs*17 variant in ICOS, encoding the inducible T-cell costimulator. This variant was located inside the 5 megabase of runs of homozygosity on 2q33.2. RNA sequencing confirmed the deleteriousness of the ICOS variant in three skin biopsies revealing significant downregulation of ICOS and its ligand, ICOSLG. Reads unaligned to the human genome were applied to 926 different viruses, and alpha-HPV57, beta-HPV107, beta-HPV14, and beta-HPV17 were detected. Collectively, we describe a previously unrecognized inborn error of T-cell immunity to HPVs, indicating that autosomal recessive ICOS deficiency can underlie recalcitrant warts, emphasizing the immunologic underpinnings of recalcitrant warts at the nexus of human and viral genomic variation.
Haselwandtera CA, Guoc YR, Fuc Z, MacKinnon R
Show All Authors

Elastic properties and shape of the Piezo dome underlying its mechanosensory function

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2022 SEP 26; 119(40):? Article e2208034119
We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon, Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2208027119 (2022)]. Here we use these results to determine the force that the Piezo dome exerts on the free membrane and hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes. From vesicle shape measurements alone, we thus obtain a force-distortion relationship for the Piezo dome, from which we deduce the Piezo dome's intrinsic radius of curvature, 42 +/- 12 nm, and bending stiffness, 18 +/- 2.1 k(B)T, in freestanding lipid bilayer membranes mimicking cell membranes. Applying these estimates to a spherical cap model of Piezo embedded in a lipid bilayer, we suggest that Piezo's intrinsic curvature, surrounding membrane footprint, small stiffness, and large area are the key properties of Piezo that give rise to low-threshold, high-sensitivity mechanical gating.
Shebl B, Ng D, Lalazar G, Rosemore C, Finkelstein TM, Migler RD, Zheng GR, Zhang PY, Jiang CS, Qureshi A, Vaughan R, Yarchoan M, de Jong YP, Rice CM, Coffino P, Ortiz MV, Zhou DH, Simon SM
Show All Authors

Targeting BCL-XL in fibrolamellar hepatocellular carcinoma

JCI INSIGHT 2022 SEP 8; 7(17):? Article e161820
Fibrolamellar hepatocellular carcinoma (FLC) is a rare and often lethal liver cancer with no proven effective systemic therapy. Inhibition of the antiapoptotic protein BCL-XL was found to synergize with a variety of systemic therapies in vitro using cells dissociated from patient-derived xenografts (PDX) of FLC or cells dissociated directly from surgical patient resections. As BCL-XL is physiologically expressed in platelets, prior efforts to leverage this vulnerability in other cancers have been hampered by severe thrombocytopenia. To overcome this toxicity, we treated FLC models with DT2216, a proteolysis targeting chimera (PROTAC) that directs BCL-XL for degradation via the von Hippel-Lindau (VHL) E3 ligase, which is minimally expressed in platelets. The combination of irinotecan and DT2216 in vitro on cells directly acquired from patients or in vivo using several xenografts derived from patients with FLC demonstrated remarkable synergy and at clinically achievable doses not associated with significant thrombocytopenia.