Skip to main content
Displaying 169 of 2857 articles.

A surprising new source of attention in the brain

Scientists find a new brain area in control of our attention skills, raising new questions in what has long been considered a settled scientific field.

Scientists develop new method that predicts vulnerability to stress

Researchers have identified a set of biological factors in mice that seem to determine one's ability to bounce back from a traumatic event, and provide preliminary evidence that a naturally-occurring substance may help boost resiliency in the face of stressful situations.

Neurodegenerative diseases may be caused by molecular transportation failures inside neurons

Protein clumps are routinely found in the brains of patients with neurodegenerative diseases. Now researchers find a link between this buildup and the intracellular movement of proteasomes, molecular machines tasked with degrading protein waste inside cells.

The pathway to Parkinson’s takes a surprising twist

A new study finds that neurons affected in Parkinson’s disease can shut down without fully dying, allowing them to also switch off neighboring cells. The findings might give scientists a better understanding of how the condition wreaks havoc in the brain, as well as ideas for new treatments.

Shapeshifting receptors may explain mysterious drug failures

Scientists have found that many receptors with high potential for drug discovery take a different configuration inside the body than in the test tube. The findings could explain why some promising drugs fail in clinical trials, and potentially open doors to new drug-development approaches.

Vanessa Ruta named a 2019 MacArthur Fellow

Ruta, who investigates how the brain is modified by experience, has received a MacArthur Fellowship, an award intended to encourage people of outstanding talent to pursue their own creative, intellectual, and professional inclinations.

>

Study gives clues to the origin of Huntington’s disease, and a new way to find drugs

Using a new technique to study brain development, scientists were able to trace the causes of Huntington's back to early developmental stages when the brain has only just begun to form.

Fruit flies find their way by setting navigational goals

Navigating fruit flies do not have the luxury of GPS, but they do have a kind of neural compass. In a new study, researchers found that the animals decide which way to turn by comparing this internal compass needle to a fixed goal.

New research raises prospect of better anti-obesity drugs

Scientists have found a group of brain cells that influence body mass in two ways, by controlling how much we eat as well as how much energy we burn. The findings could lead to new drugs to help people shed weight.

Learning from experience is all in the timing

Animals learn the hard way which sights, sounds, and smells are relevant to survival. New research in flies shows that the timing of these cues plays an important role in how mental associations arise, and elucidates brain pathways involved in this process.

>

New research shows that mosquitoes sense repellent through their legs

Scientists made the surprising discovery that the insects’ displeasure for touching DEET, the active ingredient in many repellents, helps prevent bites.

Cellular rivalry promotes healthy skin development

Scientists have discovered a curious phenomenon taking place in mouse skin: cells compete with one another for the chance to develop into mature tissue. The findings indicate that this antagonism is key to creating healthy skin.

>

Researchers find genetic link to tuberculosis

Rockefeller scientists have identified a genetic condition that makes people prone to developing tuberculosis. In a British population, they found that the condition underlies one percent of cases of the disease—a finding that may ultimately lead to new treatment options.

Research on repetitive worm behavior may have implications for understanding human disease

Studying microscopic worms, Rockefeller scientists have identified a brain circuit that drives repetitive behavior—providing potential clues for understanding some human psychiatric conditions.

New microscopy technique peers deep into the brain

Using new imaging technology, researchers can now record the activity of large populations of brain cells with unprecedented speed, and at new depths.

Scientists find brain mechanism that naturally combats overeating

Studying a brain region involved in memory, researchers discovered a set of neurons that help mice control their appetite.

Scientists identify genetic factors that may cause some people to become obese

New research on leptin, a hormone that regulates appetite, reveals a previously unknown mechanism that may be responsible for at least 10 percent of obesity cases. The findings could help identify individuals with treatable forms of the condition.

Inside the brains of hungry worms, researchers find clues about how they hunt

When looking for food, the roundworm C. elegans searches the same area for up to 20 minutes before trying its luck at more distant locales. New research on the worm’s brain explains how this behavior arises at the level of molecules and cells.

New findings could make mosquitoes more satisfied—and safer to be around

Scientists have learned new tricks that could be useful in preventing mosquito-borne illnesses such as Zika and yellow fever. A new study shows that some appetite-reducing drugs can curtail the insects’ impulse to feed on warm-blooded hosts.

New method for studying gene expression could improve understanding of brain disease

By analyzing gene expression patterns, researchers have identified previously unknown distinctions between mouse and human neurons. They have also developed a new way to track cellular changes associated with brain disorders.

Mosquito genome opens new avenues for reducing bug-borne disease

Researchers have assembled a new and improved DNA catalogue for the mosquito Aedes aegypti. This tool will help researchers understand the insect’s biology, and may lead to new strategies for preventing diseases like Zika and dengue.

Gaby Maimon and Luciano Marraffini are named HHMI investigators

Maimon, who studies cognition and decision-making, and Marraffini, who studies the bacterial defense system CRISPR-Cas, are among 19 scientists nationwide to receive this designation.

What happens to a dying cell’s corpse? New findings illuminate an old problem

Scientists have discovered a curious way for cells to die. In studying it, they are learning about how remnants of diseased cells are normally chewed up and removed.

>

In brief: Mutation explains why some people are more vulnerable to viral brain infection

Scientists identified mutations in a single gene that impair immunity to viruses in a region of the brain called the brain stem.

Scientists shed light on biological roots of individuality

A new study illuminates the biology that guides behavior across different stages of life in worms, and suggests how variations in specific neuromodulators in the developing nervous system may lead to occasional variations.

New images reveal how the ear’s sensory hairs take shape

Our ability to hear relies on tiny bundles of hair-like sensors inside the inner ear. Scientists have identified a key component of the machinery that makes these bundles grow in an orderly fashion.

Brain research points the way to new treatments for nicotine addiction

Scientists have discovered a group of brain cells that may play a role in keeping smokers addicted to nicotine. Their work could ultimately lead to new drugs to help people conquer their tobacco dependence.

Neuroscientist Vanessa Ruta promoted to associate professor

Ruta, who explores how brains produce such flexible responses to fixed stimuli, has been promoted to Gabrielle H. Reem and Herbert J. Kayden associate professor.

Daniel Kronauer, who uses ants to study social behavior, is promoted

Kronauer has been promoted to associate professor. He has dedicated his laboratory to investigating the molecular basis underlying complex social behavior among insects.

Mosquito sex protein could provide key to controlling disease

A protein transferred from male to female mosquitoes during sex influences female mating behavior—a phenomenon that could be exploited to limit the spread of mosquito-borne illnesses like Zika and dengue.