Skip to main content
Displaying 125 of 2850 articles.

Pels Family Center for Biochemistry and Structural Biology receives new $10 million grant

by Alexandra MacWade, assistant editor A new $10 million endowment gift made by the Donald A. Pels Charitable Trust will provide ongoing support for the university’s chemical and structural biologists through the Pels Family Center for Biochemistry and Structural Biology. Mr. Pels, who was a Roc...

New structure shows how cells assemble protein-making machinery

Scientists at The Rockefeller University have created the most detailed three-dimensional images to date of an important step in the process by which cells make the nano-machines responsible for producing all-important protein. The results, described December 15 in Science, are prompting the rese...

First structural map of the cystic fibrosis protein sheds light on how mutations cause disease

Rockefeller scientists have created the first three-dimensional map of the protein responsible for cystic fibrosis, an inherited disease for which there is no cure. This achievement, described December 1 in Cell, offers the kinds of insights essential to better understanding and treating this oft...

Survey of New York City soil uncovers medicine-making microbes

Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet. Researchers at The Rockefeller University have shown that the dirt beneath New York City teems with our tiny allies in the fight against disease. In soil c...

Researchers discover new antibiotics by sifting through the human microbiome

Most antibiotics in use today are based on natural molecules produced by bacteria—and given the rise of antibiotic resistance, there’s an urgent need to find more of them. Yet coaxing bacteria to produce new antibiotics is a tricky proposition. Most bacteria won’t grow in the lab. And even whe...

Researchers shed new light on RNA’s journey out of a cell’s nucleus

Cells secure DNA within their nuclei like a secret code stashed in a vault. However, the tightly controlled borders of the nucleus create a challenge: In order for the cell to produce essential proteins, messages derived from DNA must somehow escape the nucleus in the form of RNA molecules. New w...

Sebastian Klinge receives 2016 NIH New Innovator Award

Sebastian Klinge, assistant professor and head of the Laboratory of Protein and Nucleic Acid Chemistry, has won a National Institutes of Health Director’s New Innovator Award. The prestigious award, which is given as a five-year grant of up to $1.5 million, supports early-career investigators who...

Study explains how an intestinal microbe protects against other, more dangerous bacteria

Antibiotics save millions of lives. But their tendency to kill helpful and harmful bacteria alike, coupled with the growing problem of antibiotic resistance, means that they are not without their downside. Probiotics consisting of beneficial microorganisms, meanwhile, have the potential to delive...

New research clarifies how cells take in cholesterol and offers insight on Ebola

Cholesterol—that waxy substance incriminated in heart attack and stroke—is a precious commodity for cells. In fact, errors in a cell’s ability to import these rod-like molecules can be fatal. In new work, researchers at The Rockefeller University and their colleagues delved into a pivotal p...

A compound that stops cells from making protein factories could lead to new antifungal drugs

Tiny, abundant biological factories, known as ribosomes, produce the cell’s most fundamental building material: protein. If ribosomes don’t work, cells can’t divide—and this can be an advantage for scientists seeking to develop drugs that target invading organisms, such as pathogenic fungi. ...