Why is getting credit for your research data so hard?

2019 Research Data Management Symposium
Wouter Haak
VP Research Data Management Elsevier
https://data.mendeley.com/
Why publishers care about open science:

Today: linear supply chains

Linear supply chains are evolving into complex, dynamic and connected value webs

The future: networked open science

Model: Castle
- Goal: selling content
- Metrics: number of units sold
- Strategy: optimize content delivery to users

Win by reputation

Model: Marketplace
- Goal: grow number of interactions
- Metrics: number of interactions between users
- Strategy: optimize number of network interactions

Win by trust

Today:

- Researchers
- Authors
- Editors/Publishers
- Readers/Users

Data → Results → Article → UI
The reproducibility crisis

More than 50% of researchers surveyed failed to reproduce their own experiments.

Research data doesn’t just need to be available, it needs to be comprehensible, available and trustworthy.

Source: https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
When talking about data, we talk about…

The information underpinning articles offers value to other researchers – with many now arguing that research data should be considered a “first class citizen” of research output, alongside literature publications.
Research Data Management adoption is growing very fast worldwide.

Annual growth: 5%

Annual Growth: 21%

US: analysed 2014-2018 research articles across disciplines

In total 3.4 mln articles analysed:

- Computer Science (5.9%)
- Mathematics (3.3%)
- Physics and Astronomy (5.6%)
- Chemistry (3.5%)
- Materials Science (4.3%)
- Engineering (8.7%)
- Environmental Science (3.1%)
- Earth and Planetary Sciences (3.0%)
- Agricultural and Biological Sciences (4.4%)
- Biochemistry, Genetics and Molecular Biology (8.2%)
- Other (15.3%)

41,797 articles with associated datasets

- Mathematics (2.1%)
- Physics and Astronomy (2.1%)
- Chemistry (15.4%)
- Chemical Engineering (6.0%)
- Materials Science (4.2%)
- Environmental Science (4.7%)
- Agricultural and Biological Sciences (12.5%)
- Immunology and Microbiology (4.1%)
- Biochemistry, Genetics and Molecular Biology (20.2%)
- Other (15.1%)

RDM adoption also growing fast in US

Source: Data Monitor analysis of Scopus, Scholix, SciVal, 5 year data 2014-2018
extracted on August, 2019 – Growth = CAGR = Compound Annual Growth Rate
Impact of sharing data in US (1)

US outputs linked to datasets

All US articles and proceedings

International collaboration

Top cited

• Higher citations
• More collaborations

Impact of sharing data in US (2)

- Higher citation impact (FWCI)
- More collaborations (less single authors)

Data sharing helps all US universities - some examples

Source: Data Monitor analysis of Scopus, Scholix, SciVal, 5 year data 2014-2018 extracted on August, 2019 – CAGR = Compound Annual Growth Rate
Datasharing at Rockefeller University: impact!

Source: Data Monitor analysis of Scopus, Scholix, SciVal, 5 year data 2014-2018 extracted on August, 2019 – CAGR = Compound Annual Growth Rate
Sharing data works:
25% higher citation impact

The citation advantage of linking publications to research data

Giovanni Colavizza¹,²,*, Iain Hrynaszkwiewicz³,⁴, Isla Staden¹,⁵, Kirstie Whitaker¹,⁶, Barbara McGillivray¹,⁶

¹ The Alan Turing Institute, UK.
² University of Amsterdam, NL.
³ Springer Nature, UK.
⁴ Public Library of Science, UK.
⁵ Queen Mary University, UK.
⁶ University of Cambridge, UK.

* g.colavizza@uva.nl

Abstract

Efforts to make research results open and reproducible are increasingly reflected by journal policies encouraging or mandating authors to provide data availability statements. As a consequence of this, there has been a strong uptake of data availability statements in recent literature. Nevertheless, it is still unclear what proportion of these statements actually contain well-formed links to data, for example via a URL or permanent identifier, and if there is an added value in providing them. We consider 531,889 journal articles published by PLOS and BMC which are part of the PubMed Open Access collection, categorize their data availability statements according to their content and analyze the citation advantage of different statement categories via regression. We find that, following mandated publisher policies, data availability statements have become common by now, yet statements containing a link to a repository are still just a fraction of the total. We also find that articles with these statements, in particular, can have up to 25.36% higher citation impact on average: an encouraging result for all publishers and authors who make the effort of sharing their data. All our data and code are made available in order to reproduce and extend our results.
Carl Kesselman builds tools to enable neuroscientists to store and share their data in a better way.

Viktor Pankratius builds software programs that generate hypotheses about volcano eruptions: the software can steer drones to collect data.

Lena Deus solves scientific problems through Kaggle: the system awards her points for scoring highest on Machine Learning tasks.

Some examples of Open Data and Open Science:

- Scientists build data sharing tools
- Computers are scientists
- Data and platforms drive progress
End-to-end RDM
Organizing for RDM: Pitfall 1 = Admin

- RDM is more than data policies and data management plans
- RDM is about **helping** researchers and institutions with their data

Organizing for RDM: pitfall 2 = Assume all research data is at your institution

Public Research data

Data shared privately by researchers around projects

Private Research data

Research data on institutional repositories

Research data on subject/domain repositories
Organizing for RDM: pitfall 3 = Assume private data is reusable in the future

- Is research data a strategic asset for the future of your institution?
- Are your researchers preserving data for future reuse?
- What happens when a researcher leaves?
- Do you have an overview of data at your institution?
RDM: need to support three data life-cycles

1. Private data
 - Find topics
 - Identify gaps
 - Plan & fund
 - Collect, analyze & visualize
 - Prepare, reproduce, re-use & benchmark
 - Discover data, people, methods & protocols
 - Data privately available (project data)

2. Public data
 - Store & share
 - Disseminate
 - Data publicly available in institutional repositories
 - Data publicly available in domain/subject repositories

3. Metrics on data
 - Benchmark
 - Rank & evaluate
 - Manage
Supporting three data life-cycles

1. Private data
 - Data Search
 - Data Manager
 - Data Repository

2. Public data
 - Data Search
 - Data Monitor

3. Metrics on data
Five Facts about Elsevier and Research Data

Fact #1 Elsevier’s Mendeley Data supports the entire lifecycle of research data
The **4 modules** that make up Mendeley Data are specifically designed to utilize data to its fullest potential, simplifying and enhancing current way of working.

Fact #2 Researchers and institutions own and control all the data
Mendeley Data allows researchers to keep data private, or publish it under one of **16 open data licenses**, so they stay in full control.

Fact #3 Mendeley Data is an open system
It is a **flexible platform** — modules are designed to be used together, standalone, or combined with other Elsevier and non-Elsevier solutions.

Fact #4 Mendeley Data can increase the exposure and impact of research
Mendeley Data Search indexes over **10 million datasets** from more than **35 repositories**.

Fact #5 Elsevier is an active participant in the open data community
Elsevier partners with the open data community, and is currently working on more than **20 projects globally**.
Why is getting credit for your research data so hard?

Perhaps it is less hard than you think: good things are already happening

Thank you

w.haak@Elsevier.com